Skip to main content
Log in

Comparison between men and women of volume regulating hormones and aquaporin-2 excretion following graded central hypovolemia

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Central hypovolemia induced by orthostatic loading causes reno-vascular changes that can lead to orthostatic intolerance. In this study, we investigated volume regulating hormonal responses and reno-vascular changes in male and female subjects as they underwent central hypovolemia, induced by graded lower body negative pressure (LBNP). Aquaporin-2 (AQP2) excretion was measured as a biomarker for the renal system response to vasopressin. 37 young healthy subjects (n = 19 males; n = 18 females) were subjected to graded LBNP until − 40 mmHg LBNP. Under resting conditions, males had significantly higher copeptin (a stable peptide derived from vasopressin) levels compared with females. Adrenocorticotropin (ACTH), adrenomedullin (ADM), vasopressin (AVP) and brain natriuretic peptide (BNP) were not affected by our experimental protocol. Nevertheless, an analysis of ADM and BNP with the data normalized as percentages of the baseline value data showed an increase from baseline to 10 min after recovery in the males in ADM and in the females in BNP. Analysis of BNP and ADM raises the possibility of a preferential adaptive vascular response to central hypovolemia in males as shown by the normalized increase in ADM, whereas females showed a preferential renal response as shown by the normalized increase in BNP. Furthermore, our results suggest that there might be a difference between men and women in the copeptin response to alterations in orthostatic loading, simulated either using LBNP or during posture changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACTH:

Adrenocorticotropic hormone

ADM:

Adrenomedullin

ANP:

Atrial natriuretic peptide

AQP2:

Aquaporin 2

AVP:

Arginine vasopressin

BNP:

Brain natriuretic peptide

CVP:

Central venous pressure

HUT:

Head up tilt

LBNP:

Lower body negative pressure

RAAS:

Renin–angiotensin–aldosterone system

References

  • Alboni P, Furlan R (eds) (2014) Vasovagal syncope. Springer, New York, p 44f

    Google Scholar 

  • Angeletti S, Dicuonzo G, Fioravanti M, Cesaris M, Fogolari M, Lo Presti A, Ciccozzi M, De Florio L (2015) Procalcitonin, MR-proadrenomedullin, and cytokines measurement in sepsis diagnosis: advantages from test combination. Dis Markers 2015:1–14

    Article  CAS  Google Scholar 

  • Bankir L, Bichet DG, Morgenthaler NG (2017) Vasopressin: physiology, assessment and osmosensation. J Intern Med 282(4):284–297

    Article  CAS  PubMed  Google Scholar 

  • Barat C, Simpson L, Breslow E (2004) Properties of human vasopressin precursor constructs: inefficient monomer folding in the absence of copeptin as a potential contributor to diabetes insipidus. Biochemistry (Mosc) 43(25):8191–8203

    Article  CAS  Google Scholar 

  • Bichet DG (2016) Vasopressin at central levels and consequences of dehydration. Ann Nutr Metab 2016 68(suppl 2):19–23

    Article  PubMed  Google Scholar 

  • Cignarelli M, De Pergola G, Paternostro A, Corso M, Cospite MR, Centaro GM, Giorgino R (1986) Arginine-vasopressin response to supine-erect posture change: an index for evaluation of the integrity of the afferent component of baroregulatory system in diabetic neuropathy. Diabète Métabolisme 12(1):28–33

    CAS  PubMed  Google Scholar 

  • Convertino VA, Tripp LD, Ludwig DA, Duff J, Chelette TL (1998) Female exposure to high G: chronic adaptations of cardiovascular functions. Aviat Space Environ Med 69(9):875–882

    CAS  PubMed  Google Scholar 

  • Crofton JT, Dustan H, Share L, Brooks DP (1986) Vasopressin secretion in normotensive black and white men and women on normal and low sodium diets. J Endocrinol 108(2):191–199

    Article  CAS  PubMed  Google Scholar 

  • de Bree FM, Burbach JP (1998) Structure-function relationships of the vasopressin prohormone domains. Cell Mol Neurobiol 18(2):173–191

    Article  PubMed  Google Scholar 

  • Dobsa L, Edozien KC (2013) Copeptin and its potential role in diagnosis and prognosis of various diseases. Biochem Medica 23(2):172–190

    Article  CAS  Google Scholar 

  • Forsling ML, Strömberg P, Åkerlund M (1982) Effect of ovarian steroids on vasopressin secretion. J Endocrinol 95(1):147–151

    Article  CAS  PubMed  Google Scholar 

  • Franke WD, Johnson CP, Steinkamp JA, Wang R, Halliwill JR (2003) Cardiovascular and autonomic responses to lower body negative pressure: do not explain gender differences in orthostatic tolerance. Clin Auton Res Off J Clin Auton Res Soc 13(1):36–44

    Article  Google Scholar 

  • Fu Q, Arbab-Zadeh A, Perhonen MA, Zhang R, Zuckerman JH, Levine BD (2004) Hemodynamics of orthostatic intolerance: implications for gender differences. Am J Physiol Heart Circ Physiol 286(1):H449–H457

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith SR, Francis GS, Cowley AW, Cohn JN (1982) Response of vasopressin and norepinephrine to lower body negative pressure in humans. Am J Physiol Heart Circ Physiol 243(6):H970–H973

    Article  CAS  Google Scholar 

  • Goswami N, Loeppky JA, Hinghofer-Szalkay H (2008) LBNP: past protocols and technical considerations for experimental design. Aviat Space Environ Med 2008; 79(5):459–471

    Article  PubMed  Google Scholar 

  • Hinghofer-Szalkay H, Lackner HK, Rössler A, Narath B, Jantscher A, Goswami N (2011) Hormonal and plasma volume changes after presyncope. Eur J Clin Investig 41(11):1180–1185

    Article  CAS  Google Scholar 

  • Ho LK, Chen K, Ho IC, Shen YC, Yen DH, Li FC, Lin YC, Kuo WK, Lou YJ, Yen JC (2008) Adrenomedullin enhances baroreceptor reflex response via cAMP/PKA signaling in nucleus tractus solitarii of rats. Neuropharmacology 55(5):729–736

    Article  CAS  PubMed  Google Scholar 

  • Holwerda DA (1972) A glycopeptide from the posterior lobe of pig pituitaries. I. Isolation and characterization. Eur J Biochem FEBS 28(3):334–339

    Article  CAS  Google Scholar 

  • Hunt PJ, Yandle TG, Nicholls MG, Richards AM, Espiner EA (1995) The amino-terminal portion of pro-brain natriuretic peptide (Pro-BNP) circulates in human plasma. Biochem Biophys Res Commun 214(3):1175–1183

    Article  CAS  PubMed  Google Scholar 

  • Janda S, Swiston J (2010) Diagnostic accuracy of pleural fluid NT-pro-BNP for pleural effusions of cardiac origin: a systematic review and meta-analysis. BMC Pulm Med 20:10:58

    Article  CAS  Google Scholar 

  • Jarvis SS, Florian JP, Curren MJ, Pawelczyk JA (2010) Sex differences in vasoconstrictor reserve during 70 deg head-up tilt. Exp Physiol 95(1):184–193

    Article  CAS  PubMed  Google Scholar 

  • Johnson BD, van Helmond N, Curry TB, van Buskirk CM, Convertino VA, Joyner MJ (2014) Reductions in central venous pressure by lower body negative pressure or blood loss elicit similar hemodynamic responses. J Appl Physiol Bethesda Md 1985 117(2):131–141

    CAS  Google Scholar 

  • Kato J, Etoh T, Kitamura K, Eto T (2005) Atrial and brain natriuretic peptides as markers of cardiac load and volume retention in primary aldosteronism. Am J Hypertens 2005 Mar;18(3):354–357

    Article  CAS  PubMed  Google Scholar 

  • Koch G, Schnyder I (2015) Model for characterizing copeptin kinetics and response in healthy subjects [Online]. http://www.page-meeting.org/?abstract=3501. Accessed 25 Aug 2015

  • Koshimizu T, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A (2012) Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev 92(4):1813–1864

    Article  CAS  PubMed  Google Scholar 

  • Krishnan B, Patarroyo-Aponte M, Duprez D, Pritzker M, Missov E, DG Benditt (2015) Orthostatic hypotension of unknown cause: unanticipated association with elevated circulating N-terminal brain natriuretic peptide (NT-proBNP). Heart Rhythm 12(6):1287–1294(

    Article  PubMed  Google Scholar 

  • Laycock JF (2010) Perspectives on vasopressin., NJ: Imperial College Press, London, p 5 ff

    Google Scholar 

  • Levine BD, Lane LD, Buckey JC, Friedman DB, Blomqvist CG (1991) Left ventricular pressure-volume and Frank–Starling relations in endurance athletes. Implications for orthostatic tolerance and exercise performance. Circulation 84(3):1016–1023

    Article  CAS  PubMed  Google Scholar 

  • Meendering JR, Torgrimson BN, Houghton BL, Halliwill JR, Minson CT (2005) Menstrual cycle and sex affect hemodynamic responses to combined orthostatic and heat stress Am J Physiol Heart Circ Physiol, vol. 289, no. 2, pp. H631–H642, Aug

    Article  CAS  PubMed  Google Scholar 

  • Mohanty S, Asha G (2015) A novel stress neurohormone copeptin: its potential role in diagnosis and prognosis of various diseases [online]. http://www.wjpr.net/dashboard/abstract_id/2075. Accessed 06 Apr 2016

  • Morgenthaler NG, Struck J, Alonso C, Bergmann A (2006) Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 52(1):112–119

    Article  CAS  PubMed  Google Scholar 

  • Nagaya N, Satoh T, Nishikimi T, Uematsu M, Furuichi S, Sakamaki F, Oya H, Kyotani S, Nakanishi N, Goto Y, Masuda Y, Miyatake K, Kangawa K (2000) Hemodynamic, renal, and hormonal effects of adrenomedullin infusion in patients with congestive heart failure. Circulation. 2000 Feb 8;101(5):498–503

    Article  CAS  PubMed  Google Scholar 

  • Nedvetsky PI, Tamma G, Beulshausen S, Valenti G, Rosenthal W, Klussmann E (2009) Regulation of aquaporin-2 trafficking. In: Beitz E (eds) Aquaporins. Handbook of experimental pharmacology, vol 190. Springer, Berlin, Heidelberg, pp 133–157

    Chapter  Google Scholar 

  • Nickel CH, Bingisser R, Morgenthaler NG (2012) The role of copeptin as a diagnostic and prognostic biomarker for risk stratification in the emergency department. BMC Med 10(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikimi T, Kuwahara K, Nakagawa Y, Kangawa K, Nakao K (2013) Adrenomedullin in cardiovascular disease: a useful biomarker, its pathological roles and therapeutic application. Curr Protein Pept Sci 14(4):256–267

    Article  CAS  PubMed  Google Scholar 

  • Norsk P, Ellegaard P, Videbaek R, Stadeager C, Jessen F, Johansen LB, Kristensen MS, Kamegai M, Warberg J, Christensen NJ (1993) Arterial pulse pressure and vasopressin release in humans during lower body negative pressure. Am J Physiol 264(5 Pt 2):R1024–R1030

    CAS  PubMed  Google Scholar 

  • Pump B, Gabrielsen A, Christensen NJ, Bie P, Bestle M, Norsk P (1999) Mechanisms of inhibition of vasopressin release during moderate antiorthostatic posture change in humans. Am J Physiol 277(1 Pt 2):R229–R235

    CAS  PubMed  Google Scholar 

  • Rademaker MT, Richards AM (2005) Cardiac natriuretic peptides for cardiac health. Clin Sci (Lond) 108(1):23–36

    Article  CAS  Google Scholar 

  • Ranchin B, Boury-Jamot M, Blanchard G, Dubourg L, Hadj-Aïssa A, Morin D, Durroux T, Cochat P, Bricca G, Verbavatz JM, Geelen G (2010) Familial nephrogenic syndrome of inappropriate antidiuresis: dissociation between aquaporin-2 and vasopressin excretion. J Clin Endocrinol Metab 2010 Sep 95(9):E37–E43

    Article  PubMed  Google Scholar 

  • Repaske DR, Medlej R, Gultekin EK, Krishnamani MR, Halaby G, Findling JW, Phillips JA (1997) Heterogeneity in clinical manifestation of autosomal dominant neurohypophyseal diabetes insipidus caused by a mutation encoding Ala-1→Val in the signal peptide of the arginine vasopressin/neurophysin II/copeptin precursor. J Clin Endocrinol Metab 82(1):51–56

    CAS  PubMed  Google Scholar 

  • Rose BD (2000) Clinical physiology of acid-base and electrolyte disorders. 5. Mcgraw-Hill Education Ltd, A. New York, p 190

    Google Scholar 

  • Rössler A, László Z, Haditsch B, Hinghofer-Szalkay HG (1999) Orthostatic stimuli rapidly change plasma adrenomedullin in humans”. Hypertension. 1999 Nov;34(5):1147–1151

    Article  PubMed  Google Scholar 

  • Rössler A, Goswami N, Haditsch B, Loeppky JA, Luft FC, Hinghofer-Szalkay H (2011) Volume regulating hormone responses to repeated head-up tilt and lower body negative pressure. Eur J Clin Investig 41(8):863–869

    Article  CAS  Google Scholar 

  • Roussel R, Fezeu L, Marre M, Velho G, Fumeron F, Jungers P, Lantieri O, Balkau B, Bouby N, Bankir L, Bichet DG (2014) Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. J Clin Endocrinol Metab 99(12):4656–4663

    Article  CAS  PubMed  Google Scholar 

  • Russomano T, May F, Dalmarco G, Baptista RR (2015) A gender comparison of cardiovascular responses to lower body negative pressure exposure. Am J Med Biol Res 3(4):95–101

    Google Scholar 

  • Schnyder I, Strausz K, Koch G, Walti C, Pfister M, Allolio B, Fenske WK, Christ-Crain M (2015) Physiological area of normality of copeptin in normal-to-hyperosmolar states. Endocr Abstr [Online]. https://www.endocrine-abstracts.org/ea/0037/ea0037EP706 Accessed 14 Jul 2018

  • Share L, Crofton JT, Ouchi Y (1988) Vasopressin: sexual dimorphism in secretion, cardiovascular actions and hypertension. Am J Med Sci 295(4):314–319

    Article  CAS  PubMed  Google Scholar 

  • Stachenfeld NS, DiPietro L, Palter SF, Nadel ER (1998) Estrogen influences osmotic secretion of AVP and body water balance in postmenopausal women. Am J Physiol 274(1 Pt 2):R187–R195

    CAS  PubMed  Google Scholar 

  • Suzuki T, Yamazaki T, Yazaki Y (2001) The role of the natriuretic peptides in the cardiovascular system. Cardiovasc Res 2001 Aug 15(3):489–494 51(

    Article  Google Scholar 

  • Tamma G, Di Mise A, Ranieri M, Svelto M, Pisot R, Bilancio G, Cavallo P, De Santo NG, Cirillo M, Valenti G (2014) A decrease in aquaporin 2 excretion is associated with bed rest induced high calciuria. J Transl Med 12:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamma G, Goswami N, Reichmuth J, de Santo NG, Valenti G (2015) Aquaporins, vasopressin, and aging: current perspectives. Endocrinology 156(3):777–788

    Article  CAS  PubMed  Google Scholar 

  • Trimarco B, de Luca N, de Simone A, Volpe M, Ricciardelli B, Lembo G, Condorelli M (1987) Impaired control of vasopressin release in hypertensive subjects with cardiac hypertrophy. Hypertension 1987 Dec 10(6):595–602

    Article  CAS  PubMed  Google Scholar 

  • Tsuchihashi T, Ueno M, Muratani H, Tomita Y, Takishita S, Fujishima M (1989) Effects of sodium depletion and orthostasis on plasma and urinary vasopressin in normal subjects. Endocrinol Jpn 36(2):237–243

    Article  CAS  PubMed  Google Scholar 

  • Valenti G, Laera A, Pace G, Aceto G, Lospalluti ML, Penza R, Selvaggi FP, Chiozza ML, Svelto M (2000) Urinary aquaporin 2 and calciuria correlate with the severity of enuresis in children. J Am Soc Nephrol 11(10):1873–1881

    CAS  PubMed  Google Scholar 

  • Vokes TJ, Weiss NM, Schreiber J, Gaskill MB, Robertson GL (1988) Osmoregulation of thirst and vasopressin during normal menstrual cycle. Am J Physiol 254:R641–R647 4 Pt 2

    CAS  PubMed  Google Scholar 

  • Wang YX, Crofton JT, Share L (1997) Sex differences in the cardiovascular and renal actions of vasopressin in conscious rats. Am J Physiol 1997 Jan 272(1 Pt 2):R370–R376

    CAS  PubMed  Google Scholar 

  • Waters WW, Ziegler MG, Meck JV (2002) Postspaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J Appl Physiol Bethesda Md 1985 92(2):586–594

    Google Scholar 

  • White DD, Gotshall RW, Tucker A (1996) Women have lower tolerance to lower body negative pressure than men. J Appl Physiol Bethesda Md 1985 80(4):1138–1143

    CAS  Google Scholar 

  • Wong LL, Verbalis JG (2002) Systemic diseases associated with disorders of water homeostasis. Endocrinol Metab Clin N Am 31:121–140

    Article  CAS  Google Scholar 

  • Wong HK, Cheung TT, Cheung BM (2012) Adrenomedullin and cardiovascular diseases. JRSM Cardiovasc Dis 1(5):1–7

    Article  Google Scholar 

Download references

Acknowledgements

We thank the participants for their time and co-operation.

Funding

This study was supported by ASI (Italian Space Agency, Grant number 2013-091-R.0) to FCS and GV.

Author information

Authors and Affiliations

Authors

Contributions

NG designed the experiments wrote the manuscript. JR designed the experiments, performed the experiments, and analyzed the data. ADM performed the experiments and analyzed the data. BB performed the experiments and analyzed the data. AR performed the experiments and analyzed the data. MC performed the experiments and analyzed the data. MR performed the experiments and analyzed the data. AR performed the experiments and analyzed the data. NGDS critical reading of the manuscript. GT performed the experiments and analyzed the data. FCS designed the experiments and wrote the manuscript. GV designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Ferdinando Carlo Sasso or Giovanna Valenti.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Massimo Pagani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, N., Reichmuth, J., Di Mise, A. et al. Comparison between men and women of volume regulating hormones and aquaporin-2 excretion following graded central hypovolemia. Eur J Appl Physiol 119, 633–643 (2019). https://doi.org/10.1007/s00421-018-4053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-4053-2

Keywords

Navigation