Skip to main content
Log in

Effects of gravitational acceleration on cardiovascular autonomic control in resting humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Previous studies of cardiovascular responses in hypergravity suggest increased sympathetic regulation. The analysis of spontaneous heart rate variability (HRV) parameters and spontaneous baroreflex sensitivity (BRS) informs on the reciprocal balance of parasympathetic and sympathetic regulations at rest. This paper was aimed at determining the effects of gravitational acceleration (a g) on HRV and BRS.

Methods

Eleven healthy subjects (age 26.6 ± 6.1) were studied in a human centrifuge at four a g levels (1, 1.5, 2 and 2.5 g) during 5-min sessions at rest. We evaluated spontaneous variability of R–R interval (RR), and of systolic and diastolic blood pressure (SAP and DAP, respectively), by power spectral analysis, and BRS by the sequence method, using the BRSanalysis® software.

Results

At 2.5 g, compared to 1 g, (1) the total power (P TOT) and the powers of LF and HF components of HRV were lower, while the LF/HF ratio was higher; (2) normalized units for LF and HF did not changed significantly; (3) the P TOT, LF and HF powers of SAP were higher; (4) the P TOT and LF power of DAP were higher; and (5) BRS was decreased.

Conclusions

These results do not agree with the notion of sympathetic up-regulation supported by the increase in HR and DAP (tonic indices), and of SAP and DAP LF powers (oscillatory indices). The P TOT reduction leads to speculate that only the sympathetic branch of the ANS might have been active during elevated a g exposure. The vascular response occurred in a condition of massive baroreceptive unloading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a g :

Gravitational acceleration

ANOVA:

Analysis of variance

ANS:

Autonomic nervous system

BRS:

Baroreflex sensitivity

DAP:

Diastolic arterial pressure

FFT:

Fast fourier transform

G z :

Vertical acceleration

HR:

Heart rate

HF:

High frequency

HFnu:

Normalized high frequency

HRV:

Heart rate variability

LF:

Low frequency

LFnu:

Normalized low frequency

LF/HF:

Low and high frequency ratio

MAP:

Mean arterial pressure

MSNA:

Muscle sympathetic nerve activity

P TOT :

Total power

R P :

Total peripheral resistance

SAP:

Systolic arterial pressure

VLF:

Very low frequency

References

  • Arai Y, Saul JP, Albrecht P, Hartley LH, Lilly LS, Cohen RJ, Colucci WS (1989) Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol Heart Circ Physiol 256:H132–H141

    CAS  Google Scholar 

  • Arbeille P, Kerbeci P, Mattar L, Shoemaker JK, Hughson R (2008) Insufficient flow reduction during LBNP in both splanchnic and lower limb areas is associated with orthostatic intolerance after bedrest. Am J Physiol Heart Circ Physiol 295:H1846–H1854

    Article  CAS  PubMed  Google Scholar 

  • Assoumou H-GN, Bertholon F, Barthélémy J-C, Pichot V, Celle S, Gosse P, Gaspoz J-M, Roche F (2012) Alteration of baroreflex sensitivity in the elderly: the relationship with metabolic syndrome components. Int J Cardiol 155:333–335

    Article  PubMed  Google Scholar 

  • Azabji-Kenfack M, Lador F, Licker M, Moia C, Tam E, Capelli C, Morel D, Ferretti G (2004) Cardiac output by Modelflow method from intra-arterial and fingertip pulse pressure profiles. Clin Sci 106:365–369

    Article  PubMed  Google Scholar 

  • Barbe P, Galitzky J, Thalamas C, Langin D, Lafontan M, Senard JM, Berlan M (1999) Increase in epinephrine-induced responsiveness during microgravity simulated by head-down bed rest in humans. J Appl Physiol 87:1614–1620

    CAS  PubMed  Google Scholar 

  • Bertinieri G, Di Rienzo M, Cavallazzi A, Ferrari AU, Pedotti A, Mancia G (1988) Evaluation of baroreceptor reflex by blood pressure monitoring in unanesthetized cats. Am J Physiol Heart Circ Physiol 254:H377–H383

    CAS  Google Scholar 

  • Bjurstedt H, Rosenhamer G, Wigertz O (1968) High-g environment and responses to graded exercise. J Appl Physiol 25:713–719

    CAS  PubMed  Google Scholar 

  • Bjurstedt H, Rosenhamer G, Tydén G (1974) Acceleration stress and effects of propranolol on cardiovascular responses. Acta Physiol Scand 90:491–500

    Article  CAS  PubMed  Google Scholar 

  • Bonjour J, Capelli C, Antonutto G, Calza S, Tam E, Linnarsson D, Ferretti G (2010) Determinants of oxygen consumption during exercise on cycle ergometer: The effects of gravity acceleration. Respir Physiol Neurophysiol 171:128–134

    Article  Google Scholar 

  • Bonjour J, Bringard A, Antonutto G, Capelli C, Linnarsson D, Pendergast DR, Ferretti G (2011) Effects of acceleration in the G z axis on human cardiopulmonary responses to exercise. Eur J Appl Physiol 111:2907–2917

    Article  PubMed  Google Scholar 

  • Brown SJ, Raman A, Barnes MJ, Mündel T (2013) Autonomic cardiovascular response to acute hypoxia and passive head-up tilting in humans. Eur J Appl Physiol 113:1731–1736

    Article  CAS  PubMed  Google Scholar 

  • Buchheit M, Richard R, Doutreleau S, Lonsdorfer-Wolf E, Brandenberger G, Simon C (2004) Effect of acute hypoxia on heart rate variability at rest and during exercise. Int J Sports Med 25:264–269

    Article  CAS  PubMed  Google Scholar 

  • Burton RR, Smith AH (2011) Adaptation to Acceleration Environments. Compr Physiol Suppl 14:943–970

    Google Scholar 

  • Christensen NJ, Heer M, Ivanova K, Norsk P (2005) Sympathetic nervous activity decreases during head-down bed rest but not during microgravity. J Appl Physiol 99:1552–1557

    Article  PubMed  Google Scholar 

  • Costes F, Roche F, Pichot V, Vergnon JM, Garet M, Barthelemy JC (2004) Influence of exercise training on cardiac baroreflex sensitivity in patients with COPD. Eur Respir J 23:396–401

    Article  CAS  PubMed  Google Scholar 

  • Cottin F, Médigue C, Papelier Y (2008) Effect of heavy exercise on spectral baroreflex sensitivity, heart rate, and blood pressure variability in well-trained humans. Am J Physiol Heart Circ Physiol 295:H1150–H1155

    Article  CAS  PubMed  Google Scholar 

  • Dauphinot V, Kossovsky MP, Gueyffier F, Pichot V, Gosse P, Roche F, Barthélémy J-C (2013) Impaired baroreflex sensitivity and the risks of new-onset ambulatory hypertension, in an elderly population-based study. Int J Cardiol 168:4010–4014

    Article  PubMed  Google Scholar 

  • Drouin E, Gournay V, Calamel J, Mouzard A, Rozé JC (1997) Assessment of spontaneous baroreflex sensitivity in neonates. Arch Dis Child Fetal Neonatal Ed 76:F108–F112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eckberg DL, Neurolab Autonomic Nervous System Team (2003) Bursting into space: alterations of sympathetic control by space travel. Acta Physiol Scand 177:299–311

    Article  CAS  PubMed  Google Scholar 

  • Edgell H, Zuj KA, Greaves DK, Shoemaker JK, Custaud M-A, Kerbeci P, Arbeille P, Hughson RL (2007) WISE-2005: adrenergic responses of women following 56-days, 6 degrees head-down bed rest with or without exercise countermeasures. Am J Physiol Regul Integr Comp Physiol 293:R2343–R2352

    Article  CAS  PubMed  Google Scholar 

  • Ertl AC, Diedrich A, Biaggioni I, Levine BD, Robertson RM, Cox JF, Zuckerman JH, Pawelczyk JA, Ray CA, Buckey JC Jr, Lane LD, Shiavi R, Gaffney FA, Costa F, Holt C, Blomqvist CG, Eckberg DL, Baisch FJ, Robertson D (2002) Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J Physiol (Lond) 538:321–329

    Article  CAS  Google Scholar 

  • Fagraeus L, Linnarsson D (1976) Autonomic origin of heart rate fluctuations at the onset of muscular exercise. J Appl Physiol 40:679–682

    CAS  PubMed  Google Scholar 

  • Ferretti G, Binzoni T, Hulo N, Kayser B, Thomet JM, Cerretelli P (1995) Kinetics of oxygen consumption during maximal exercise at different muscle temperatures. Respir Physiol 102:261–268

    Article  CAS  PubMed  Google Scholar 

  • Ferretti G, Iellamo F, Pizzinelli P, Kenfack MA, Lador F, Lucini D, Porta A, Narkiewicz K, Pagani M (2009) Prolonged head down bed rest-induced inactivity impairs tonic autonomic regulation while sparing oscillatory cardiovascular rhythms in healthy humans. J Hypertens 27:551–561

    Article  CAS  PubMed  Google Scholar 

  • Florian JP, Simmons EE, Chon KH, Faes L, Shykoff BE (2013) Cardiovascular and autonomic responses to physiological stressors before and after 6 h of water immersion. J Appl Physiol 115:1275–1289

    Article  CAS  PubMed  Google Scholar 

  • Fortrat JO, Sigaudo D, Hughson RL, Maillet A, Yamamoto Y, Gharib C (2001) Effect of prolonged head-down bed rest on complex cardiovascular dynamics. Auton Neurosci 86:192–201

    Article  CAS  PubMed  Google Scholar 

  • Girardis M, Linnarsson D, Moia C, Pendergast DR, Ferretti G (1999) Oxygen cost of dynamic leg exercise on a cycle ergometer: effects of gravity acceleration. Acta Physiol Scand 166:239–246

    Article  CAS  PubMed  Google Scholar 

  • Hirayanagi K, Iwase S, Kamiya A, Sasaki T, Mano T, Yajima K (2004) Functional changes in autonomic nervous system and baroreceptor reflex induced by 14 days of 6 degrees head-down bed rest. Eur J Appl Physiol 92:160–167

    Article  PubMed  Google Scholar 

  • Hughson RL, Maillet A, Gauquelin G, Arbeille P, Yamamoto Y, Gharib C (1995) Investigation of hormonal effects during 10-h head-down tilt on heart rate and blood pressure variability. J Appl Physiol 78:583–596

    CAS  PubMed  Google Scholar 

  • Inagaki T, Sonobe T, Poole DC, Kano Y (2011) Progressive arteriolar vasoconstriction and fatigue during tetanic contractions of rat skeletal muscle are inhibited by α-receptor blockade. J Physiol Sci 61:181–189

    Article  CAS  PubMed  Google Scholar 

  • Kamiya A, Iwase S, Kitazawa H, Mano T (1999) Muscle sympathetic nerve activity (MSNA) after 120 days of 6 degrees head-down bed rest (HDBR). Environ Med 43:150–152

    CAS  PubMed  Google Scholar 

  • Kamiya A, Michikami D, Iwase S, Hayano J, Kawada T, Sugimachi M, Sunagawa K (2004) Alpha-adrenergic vascular responsiveness to sympathetic nerve activity is intact after head-down bed rest in humans. Am J Physiol Regul Integr Comp Physiol 286:R151–R157

    Article  CAS  PubMed  Google Scholar 

  • Kardos A, Watterich G, de Menezes R, Csanády M, Casadei B, Rudas L (2001) Determinants of spontaneous baroreflex sensitivity in a healthy working population. Hypertension 37:911–916

    Article  CAS  PubMed  Google Scholar 

  • La Rovere MT, Pinna GD, Raczak G (2008) Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol 13:191–207

    Article  PubMed  Google Scholar 

  • Lador F, Azabji Kenfack M, Moia C, Cautero M, Morel DR, Capelli C, Ferretti G (2006) Simultaneous determination of the kinetics of cardiac output, systemic O(2) delivery, and lung O(2) uptake at exercise onset in men. Am J Physiol Regul Integr Comp Physiol 290:R1071–R1079

    Article  CAS  PubMed  Google Scholar 

  • Laitinen T, Hartikainen J, Vanninen E, Niskanen L, Geelen G, Länsimies E (1998) Age and gender dependency of baroreflex sensitivity in healthy subjects. J Appl Physiol 84:576–583

    CAS  PubMed  Google Scholar 

  • Linnarsson D, Rosenhamer G (1968) Exercise and arterial pressure during simulated increase of gravity. Acta Physiol Scand 74:50–57

    Article  CAS  PubMed  Google Scholar 

  • Lombardi F, Mortara A (1998) Heart rate variability and cardiac failure. Heart 80:213–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482–492

    Article  CAS  PubMed  Google Scholar 

  • O’Leary DD, Kimmerly DS, Cechetto AD, Shoemaker JK (2003) Differential effect of head-up tilt on cardiovagal and sympathetic baroreflex sensitivity in humans. Exp Physiol 88:769–774

    Article  PubMed  Google Scholar 

  • Pagani M, Malliani A (2000) Interpreting oscillations of muscle sympathetic nerve activity and heart rate variability. J Hypertens 18:1709–1719

    Article  CAS  PubMed  Google Scholar 

  • Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59:178–193

    Article  CAS  PubMed  Google Scholar 

  • Pagani M, Montano N, Porta A, Malliani A, Abboud FM, Birkett C, Somers VK (1997) Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation 95:1441–1448

    Article  CAS  PubMed  Google Scholar 

  • Parati G, Di Rienzo M, Bertinieri G, Pomidossi G, Casadei R, Groppelli A, Pedotti A, Zanchetti A, Mancia G (1988) Evaluation of the baroreceptor-heart rate reflex by 24-h intra-arterial blood pressure monitoring in humans. Hypertension 12:214–222

    Article  CAS  PubMed  Google Scholar 

  • Pendergast DR, Olszowka A, Farhi LE (2012) Cardiovascular and pulmonary responses to increased acceleration forces during rest and exercise. Aviat Space Environ Med 83:488–495

    Article  PubMed  Google Scholar 

  • Perini R, Veicsteinas A (2003) Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur J Appl Physiol 90:317–325

    Article  PubMed  Google Scholar 

  • Perini R, Orizio C, Baselli G, Cerutti S, Veicsteinas A (1990) The influence of exercise intensity on the power spectrum of heart rate variability. Eur J Appl Physiol 61:143–148

    Article  CAS  Google Scholar 

  • Piccirillo G, Cacciafesta M, Viola E, Santagada E, Nocco M, Lionetti M, Bucca C, Moisè A, Tarantini S, Marigliano V (2001) Influence of aging on cardiac baroreflex sensitivity determined non-invasively by power spectral analysis. Clin Sci 100:267–274

    Article  CAS  PubMed  Google Scholar 

  • Rådegran G, Saltin B (1998) Muscle blood flow at onset of dynamic exercise in man. Am J Physiol Heart Circ Physiol 274:H314–H322

    Google Scholar 

  • Remington JW, Wood EH (1956) Formation of peripheral pulse contour in man. J Appl Physiol 9:433–442

    CAS  PubMed  Google Scholar 

  • Robinson BF, Epstein SE, Beiser D, Braunwald E (1966) Control of heart rate by the autonomic nervous system: studies in man on the interrelation between baroreceptor mechanisms and exercise. Circ Res 19:400–411

    Article  CAS  PubMed  Google Scholar 

  • Rohdin M, Linnarsson D (2002) Differential changes of lung diffusing capacity and tissue volume in hypergravity. J Appl Physiol 93:931–935

    Article  PubMed  Google Scholar 

  • Rosenhamer G (1967) Influence of increased gravitational stress on the adaptation of cardiovascular and pulmonary function to exercise. Acta Physiol Scand Suppl 276:1–61

    CAS  PubMed  Google Scholar 

  • Rosenstock E, Cassuto Y, Zmora E (1999) Heart rate variability in the neonate and infant: analytical methods, physiological and clinical observations. Acta Paediatr 88:477–482

    Article  CAS  PubMed  Google Scholar 

  • Rydlewska A, Jankowska EA, Ponikowska B, Borodulin-Nadzieja L, Banasiak W, Ponikowski P (2011) Changes in autonomic balance in patients with decompensated chronic heart failure. Clin Auton Res 21:47–54

    Article  PubMed  Google Scholar 

  • Schneider S, Guardiera S, Kleinert J, Steinbacher A, Abel T, Carnahan H, Strüder HK (2008) Centrifugal acceleration to 3Gz is related to increased release of stress hormones and decreased mood in men and women. Stress 11:339–347

    Article  CAS  PubMed  Google Scholar 

  • Sigaudo D, Fortrat JO, Allevard AM, Maillet A, Cottet-Emard JM, Vouillarmet A, Hughson RL, Gauquelin-Koch G, Gharib C (1998) Changes in the sympathetic nervous system induced by 42 days of head-down bed rest. Am J Physiol Heart Circ Physiol 274:H1875–H1884

    CAS  Google Scholar 

  • Strempel S, Schroeder C, Hemmersbach R, Boese A, Tank J, Diedrich A, Heer M, Luft FC, Jordan J (2008) Norepinephrine transporter inhibition alters the hemodynamic response to hypergravitation. J Appl Physiol 104:756–760

    Article  PubMed  Google Scholar 

  • Tanaka K, Nishimura N, Sato M, Kanikowska D, Shimizu Y, Inukai Y, Abe C, Iwata C, Morita H, Iwase S, Sugenoya J (2013) Arterial pressure oscillation and muscle sympathetic nerve activity after 20 days of head-down bed rest. Auton Neurosci 177:266–270

    Article  PubMed  Google Scholar 

  • Tank J, Baevski RM, Fender A, Baevski AR, Graves KF, Ploewka K, Weck M (2000) Reference values of indices of spontaneous baroreceptor reflex sensitivity. Am J Hypertens 13:268–275

    Article  CAS  PubMed  Google Scholar 

  • Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability. Standards of Measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  • Traon AP, Sigaudo D, Vasseur P, Maillet A, Fortrat JO, Hughson RL, Gauquelin-Koch G, Gharib C (1998) Cardiovascular responses to orthostatic tests after a 42-day head-down bed-rest. Eur J Appl Physiol Occup Physiol 77:50–59

    Article  CAS  PubMed  Google Scholar 

  • Victor RG, Secher NH, Lyson T, Mitchell JH (1995) Central command increases muscle sympathetic nerve activity during intense intermittent isometric exercise in humans. Circ Res 76:127–131

    Article  CAS  PubMed  Google Scholar 

  • Weippert M, Kumar M, Kreuzfeld S, Arndt D, Rieger A, Stoll R (2010) Comparison of three mobile devices for measuring R–R intervals and heart rate variability: Polar S810i, Suunto t6 and an ambulatory ECG system. Eur J Appl Physiol 109:779–786

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Swiss National Science Foundation grants 3200B0 102181 and 32003B_143427 to Guido Ferretti, by a grant from the Access to Ground Based Facilities Initiative of the European Space Agency to Dag Linnarsson and by Italian Space Agency grant ASI/DCMC to Carlo Capelli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothée Fontolliet.

Additional information

Communicated by Massimo Pagani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontolliet, T., Pichot, V., Antonutto, G. et al. Effects of gravitational acceleration on cardiovascular autonomic control in resting humans. Eur J Appl Physiol 115, 1417–1427 (2015). https://doi.org/10.1007/s00421-015-3117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3117-9

Keywords

Navigation