Skip to main content

Advertisement

Log in

Autonomic cardiovascular response to acute hypoxia and passive head-up tilting in humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Acute hypoxia may alter autonomic cardiovascular reflexes during orthostasis. Heart rate variability (HRV), arterial blood pressure (MAP), and respiratory sinus arrhythmia (RSA) were recorded during supine (SUP) and passive head up tilt (HUT) in eight healthy humans, spontaneously breathing either room air or 10 % O2 in N2. In the time domain, heart rate increased and variability decreased with HUT in both trials, with no difference between trials. In the frequency domain, normalized low frequency HRV increased, and normalized high frequency HRV decreased with HUT in both trials, with no difference between trials. MAP was 74.9 (8.6) and 77.5 (11.7) mmHg when SUP in the room air and hypoxia trials, respectively. A significant increase in MAP occurred with HUT in the room air trial but not in the hypoxia trial. In both trials, end tidal CO2 decreased with HUT, with no difference between trials. In the room air trial, end tidal O2 increased with HUT, whereas during the hypoxia trial, end tidal O2 decreased with HUT. The distribution of heart beats relative to the phase of ventilation (%HBIN and %HBOUT) was similar in both trials: the %HBIN was 43.5 (3.3) % and %HBOUT was 56.5 (4.2) % breathing room air when SUP, and 45.5 (3.0) and 54.5 (3.2) when hypoxic and SUP. For both trials, this distribution did not change with HUT. As both HRV and RSA showed similar responses to HUT when spontaneously breathing either room air or 10 % O2 in N2, we suggest that autonomic cardiovascular reflexes are preserved during acute hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bernardi L, Passino C, Spadacini G et al (1998) Cardiovascular autonomic modulation and activity of carotid baroreceptors at altitude. Clin Sci 95:565–573

    Article  PubMed  CAS  Google Scholar 

  • Brown SJ, Howden R (2008) The effects of a respiratory acidosis on human heart rate variability. Adv Exp Med Biol 605:361–365

    Article  PubMed  CAS  Google Scholar 

  • Brown SJ, Munel T, Brown JA (2007) Cardiac vagal control and respiratory sinus arrhythmia during hypercapnia in humans. J Physiol Sci 57:337–342

    Article  PubMed  CAS  Google Scholar 

  • Brown SJ, Bryant M, Mündel T, Stannard SR (2009a) Human ventilatory efficiency and respiratory sinus arrhythmia during head-up tilt. J Physiol Pharm 59:771–780

    Google Scholar 

  • Brown SJ, Mündel T, Barnes M, Brown JA (2009b) Tilt-induced changes in human heart rate variability with and without a respiratory acidosis. J Physiol Sci 59:31–36

    Article  PubMed  CAS  Google Scholar 

  • Cooke WH, Hoag JB, Crossman AA, Kuusela TA, Tahvanainen KUO, Eckberg DL (1999) Human responses to upright tilt: a window on central autonomic integration. J Physiol 517:617–628

    Article  PubMed  CAS  Google Scholar 

  • Cornolo J, Mollard P, Brugniaux JV et al (2004) Autonomic control of the cardiovascular system during acclimatization to high altitude: effects of sildenafil. J Appl Physiol 97:935–940

    Article  PubMed  CAS  Google Scholar 

  • Eckberg DL, Barstow H, Scruby AE (1982) Modulation of human sinus node function by systemic hypoxia. J Appl Physiol 52:570–577

    PubMed  CAS  Google Scholar 

  • Grossman P, Taylor E (2007) Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and bio-behavioural functions. Biol Psych 74:263–285

    Article  Google Scholar 

  • Hainsworth R, Drinkhill MJ, Rivera-Chira M (2007) The autonomic nervous system at high altitude. Clin Auton Res 17:13–19

    Article  PubMed  Google Scholar 

  • Hayano J, Yasuma F, Okada A, Mukai S, Fujinami T (1996) Respiratory sinus arrhythmia-phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation 94:842–847

    Article  PubMed  CAS  Google Scholar 

  • Henriksen O, Rowell LB (1986) Lack of effect of moderate hypoxaemia on human postural reflexes to skeletal muscle. Acta Physiol Scand 127:171–175

    Article  PubMed  CAS  Google Scholar 

  • Hirsch JA, Bishop B (1981) Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol Heart Circ Physiol 241:H620–H629

    CAS  Google Scholar 

  • Hughson RL, Yamamoto Y, McCullough RE et al (1994) Sympathetic and parasympathetic indicators of heart rate control at altitude studied by spectral analysis. J Appl Physiol 77:2537–2542

    PubMed  CAS  Google Scholar 

  • Iwasaki K, Ogawa Y, Aoki K et al (2006) Cardiovascular regulation response to hypoxia during stepwise decreases from 21 to 15% inhaled oxygen. Aviat Space Environ Med 77:1015–1019

    PubMed  Google Scholar 

  • Kamiya A, Hayano J, Kawada T et al (2005) Low-frequency oscillation of sympathetic nerve activity decreases during development of tilt-induced syncope preceding sympathetic withdrawal and bradycardia. Am J Physiol Heart Circ Physiol 289:H1758–H1769

    Article  PubMed  CAS  Google Scholar 

  • Kochiadakis GE, Kanoupakis EM, Igoumenidis NE, Marketou ME, Solomou MC, Vardas PE (1998) Spectral analysis of heart rate variability during tilt-table testing in patients with vasovagal syncope. Int J Cardiol 64:185–194

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre F, Buchheit M, Joulia F, Fontanari P, Tourny-Chollet C (2008) Static apnea effect on heart rate and its variability in elite breath-hold divers. Aviat Space Environ Med 79:99–104

    Article  PubMed  Google Scholar 

  • Marshall JM (1994) Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev 74:543–594

    PubMed  CAS  Google Scholar 

  • Mazzeo RS, Child A, Butterfield GE et al (1998) Catecholamine response during 12 days of high-altitude exposure (4,300 m) in women. J Appl Physiol 84:1151–1157

    PubMed  CAS  Google Scholar 

  • Novak V, Novak P, Spies JM, Low PA (1998) Autoregulation of cerebral blood flow in orthostatic hypotension. Stroke 29:104–111

    Article  PubMed  CAS  Google Scholar 

  • Perini R, Milesi S, Biancardi L, Veicsteinas A (1996) Effects of high altitude acclimatization on heart rate variability in resting humans. Eur J Appl Physiol Occup Physiol 73:521–528

    Article  PubMed  CAS  Google Scholar 

  • Piccirillo G, Fimognari F, Viola E, Marigliano V (1995) Age-adjusted normal confidence intervals for heart rate variability in healthy subjects during head-up tilt. Int J Cardiol 50:117–124

    Article  PubMed  CAS  Google Scholar 

  • Ponchia A, Noventa D, Bertaglia M et al (1994) Cardiovascular neural regulation during and after prolonged high altitude exposure. Eur Heart J 15:1463–1469

    PubMed  CAS  Google Scholar 

  • Prabhakar NR, Peng Y, Jacono F, Kumar G, Dick T (2005) Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreceptors. Clin Exp Pharm Physiol 32:447–449

    Article  CAS  Google Scholar 

  • Rickards CA, Newman DG (2002) The effect of low-level normobaric hypoxia on orthostatic responses. Aviat Space Environ Med 73:460–465

    PubMed  Google Scholar 

  • Rosner MJ, Coley IB (1986) Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg 65:636–641

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Tanobe K, Yamada M, Nishihara F (2005) Relationship between arterial oxygen saturation and heart rate variability at high altitudes. Am J Emerg Med 23:8–12

    Article  PubMed  Google Scholar 

  • Sevre K, Bendz B, Hankø E et al (2001) Reduced autonomic activity during stepwise exposure to high altitude. Acta Physiol Scand 173:409–417

    Article  PubMed  CAS  Google Scholar 

  • Somers VK, Mark AL, Abboud FM (1991) Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest 87:1953–1957

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Asahina M, Suzuki A, Hattori T (2008) Cerebral oxygenation monitoring for detecting critical cerebral hypoperfusion in patients with multiple system atrophy during head-up tilt test. Inter Med 47:1681–1687

    Article  Google Scholar 

  • Thomas KN, Galvin SD, Williams MJA, Willie CK, Ainslie PN (2010) Identical pattern of cerebral hypoperfusion during different types of syncope. J Hum Hypertension 24:458–466

    Article  CAS  Google Scholar 

  • Toska K, Walloe L (2002) Dynamic time course of hemodynamic responses after passive head-up tilt and tilt back to supine position. J Appl Physiol 92:1671–1676

    PubMed  Google Scholar 

  • Tzeng YC, Larsen PD, Galletly DC (2007) Effects of hypercapnia and hypoxemia on respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Am J Physiol Heart Circ Physiol 292:H2397–H2407

    Article  PubMed  CAS  Google Scholar 

  • Yasuma F, Hayano J (2004) Respiratory sinus arrhythmia—why does the heart beat synchronize with respiratory rhythm? Chest 125:683–690

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Brown.

Additional information

Communicated by Massimo Pagani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, S.J., Raman, A., Barnes, M.J. et al. Autonomic cardiovascular response to acute hypoxia and passive head-up tilting in humans. Eur J Appl Physiol 113, 1731–1736 (2013). https://doi.org/10.1007/s00421-013-2601-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2601-3

Keywords

Navigation