Skip to main content
Log in

Age and aerobic training status effects on plasma and skeletal muscle tPA and PAI-1

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Introduction

Reductions in fibrinolytic potential occur with both aging and physical inactivity and are associated with an increased cardiovascular disease risk. Plasmin, the enzyme responsible for the enzymatic degradation of fibrin clots, is activated by tissue plasminogen activator (tPA), while plasminogen activator inhibitor-1 (PAI-1) inhibits its activation. Currently, fibrinolysis research focuses almost exclusively on changes within the plasma. However, tPA and PAI-1 are expressed by human skeletal muscle (SM). Currently, no studies have focused on changes in SM fibrinolytic activity with regard to aging and aerobic fitness.

Purpose

The purpose of this study was to cross-sectionally evaluate effects of age and aerobic fitness on tPA and PAI-1 expressions and activity in SM.

Methods

Twenty-six male subjects were categorized into the following groups: (1) young aerobically trained (n = 8); (2) older aerobically trained (n = 6); (3) young aerobically untrained (n = 7); and (4) older aerobically untrained (n = 5). Muscle biopsies were obtained from each subject. SM tPA activity was assessed using gel zymography and SM tPA and PAI-1 expressions were assessed using RT-PCR.

Results

Trained subjects had higher SM tPA activity compared to untrained (25.3 ± 2.4 × 103 vs. 21.5 ± 5.6 × 103 pixels, respectively; p = 0.03) with no effect observed for age. VO2 max and SM tPA activity were also significantly correlated (r = 0.42; p < 0.04). SM tPA expression was higher in older participants, but no effect of fitness level was observed. No differences were observed for PAI-1 expression in SM.

Conclusions

Higher levels of aerobic fitness are associated with increased fibrinolytic activity in SM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CVD:

Cardiovascular disease

OT:

Older trained

OU:

Older untrained

PAI-1:

Plasminogen activator inhibitor-1

PCR:

Polymerase chain reaction

RCF:

Relative centrifugal force

RNA:

Ribonucleic acid

RT:

Reverse transcription

SM:

Skeletal muscle

tPA:

Tissue plasminogen activator

uPA:

Urokinase plasminogen activator

VO2 max :

Maximal oxygen consumption

wt:

Weight

YT:

Young trained

YU:

Young untrained

References

  • Abbate R, Prisco D, Rostagno C, Boddi M, Gensini GF (1993) Age-related changes in the hemostatic system. Int J Clin Lab Res 23(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Angleton P, Chandler WL, Schmer G (1989) Diurnal variation of tissue-type plasminogen activator and its rapid inhibitor (PAI-1). Circulation 79(1):101–106

    Article  CAS  PubMed  Google Scholar 

  • Barani AE, Durieux AC, Sabido O, Freyssenet D (2003) Age-related changes in the mitotic and metabolic characteristics of muscle-derived cells. J Appl Physiol 95(5):2089–2098

    PubMed  Google Scholar 

  • Bassett DR Jr (1994) Skeletal muscle characteristics: relationships to cardiovascular risk factors. Med Sci Sports Exerc 26(8):957–966

    Article  PubMed  Google Scholar 

  • Carpenter RL, Lemmer JT, Francis RM, Knous JL, Sarzynski MA, Womack CJ (2010) Tissue plasminogen activator and plasminogen activator inhibitor-1 gene expression in muscle after maximal acute aerobic exercise. J Exerc Physiol 13(6):35–44

    Google Scholar 

  • Chandler WL, Levy WC, Stratton JR (1995) The circulatory regulation of TPA and UPA secretion, clearance, and inhibition during exercise and during the infusion of isoproterenol and phenylephrine. Circulation 92(10):2984–2994

    Article  CAS  PubMed  Google Scholar 

  • Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R (2008) Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 295(1):R264–R272

    Article  CAS  PubMed  Google Scholar 

  • DeSouza CA, Jones PP, Seals DR (1998) Physical activity status and adverse age-related differences in coagulation and fibrinolytic factors in women. Arterioscler Thromb Vasc Biol 18(3):362–368

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed MS, El-Sayed Ali Z, Ahmadizad S (2004) Exercise and training effects on blood haemostasis in health and disease: an update. Sports Med 34(3):181–200

    Article  PubMed  Google Scholar 

  • Estelles A, Aznar J, Tormo G, Sapena P, Tormo V, Espana F (1989) Influence of a rehabilitation sports programme on the fibrinolytic activity of patients after myocardial infarction. Thromb Res 55(2):203–212

    Article  CAS  PubMed  Google Scholar 

  • Evans WJ, Phinney SD, Young VR (1982) Suction applied to a muscle biopsy maximizes sample size. Med Sci Sports Exerc 14(1):101–102

    CAS  PubMed  Google Scholar 

  • Fibbi G, Barletta E, Dini G, Del Rosso A, Pucci M, Cerletti M, Del Rosso M (2001) Cell invasion is affected by differential expression of the urokinase plasminogen activator/urokinase plasminogen activator receptor system in muscle satellite cells from normal and dystrophic patients. Lab Invest 81(1):27–39

    Article  CAS  PubMed  Google Scholar 

  • Fibbi G, D’Alessio S, Pucci M, Cerletti M, Del Rosso M (2002) Growth factor-dependent proliferation and invasion of muscle satellite cells require the cell-associated fibrinolytic system. Biol Chem 383(1):127–136

    Article  CAS  PubMed  Google Scholar 

  • Folsom AR, Aleksic N, Park E, Salomaa V, Juneja H, Wu KK (2001) Prospective study of fibrinolytic factors and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb Vasc Biol 21(4):611–617

    Article  CAS  PubMed  Google Scholar 

  • Francis JL (1988) Fibrinogen, fibrin stabilisation, and fibrinolysis: clinical, biochemical, and laboratory aspects. Ellis Horwood series in biomedicine. VCH, New York

    Google Scholar 

  • Gardner AW, Killewich LA (2002) Association between physical activity and endogenous fibrinolysis in peripheral arterial disease: a cross-sectional study. Angiology 53(4):367–374

    Article  PubMed  Google Scholar 

  • Giri S, Thompson PD, Kiernan FJ, Clive J, Fram DB, Mitchel JF, Hirst JA, McKay RG, Waters DD (1999) Clinical and angiographic characteristics of exertion-related acute myocardial infarction. JAMA 282(18):1731–1736

    Article  CAS  PubMed  Google Scholar 

  • Gleerup G, Winther K (1995) The effect of ageing on platelet function and fibrinolytic activity. Angiology 46(8):715–718

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Kobayashi A, Yamazaki N, Sugawara Y, Takada Y, Takada A (1987) Relationship between age and plasma t-PA, PA-inhibitor, and PA activity. Thromb Res 46(5):625–633

    Article  CAS  PubMed  Google Scholar 

  • Hepple RT, Mackinnon SL, Goodman JM, Thomas SG, Plyley MJ (1997) Resistance and aerobic training in older men: effects on VO2peak and the capillary supply to skeletal muscle. J Appl Physiol 82(4):1305–1310

    CAS  PubMed  Google Scholar 

  • Hittel DS, Kraus WE, Hoffman EP (2003) Skeletal muscle dictates the fibrinolytic state after exercise training in overweight men with characteristics of metabolic syndrome. J Physiol 548(Pt 2):401–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huber D, Cramer EM, Kaufmann JE, Meda P, Masse JM, Kruithof EK, Vischer UM (2002) Tissue-type plasminogen activator (t-PA) is stored in Weibel–Palade bodies in human endothelial cells both in vitro and in vivo. Blood 99(10):3637–3645

    Article  CAS  PubMed  Google Scholar 

  • Killewich LA, Macko RF, Montgomery PS, Wiley LA, Gardner AW (2004) Exercise training enhances endogenous fibrinolysis in peripheral arterial disease. J Vasc Surg 40(4):741–745

    Article  PubMed  Google Scholar 

  • Koh TJ, Bryer SC, Pucci AM, Sisson TH (2005) Mice deficient in plasminogen activator inhibitor-1 have improved skeletal muscle regeneration. Am J Physiol Cell Physiol 289(1):C217–C223

    Article  CAS  PubMed  Google Scholar 

  • Kraus WE, Torgan CE, Duscha BD, Norris J, Brown SA, Cobb FR, Bales CW, Annex BH, Samsa GP, Houmard JA, Slentz CA (2001) Studies of a targeted risk reduction intervention through defined exercise (STRRIDE). Med Sci Sports Exerc 33(10):1774–1784

    Article  CAS  PubMed  Google Scholar 

  • Lash JM, Bohlen HG (1992) Functional adaptations of rat skeletal muscle arterioles to aerobic exercise training. J Appl Physiol 72(6):2052–2062

    CAS  PubMed  Google Scholar 

  • Leber TM, Balkwill FR (1997) Zymography: a single-step staining method for quantitation of proteolytic activity on substrate gels. Anal Biochem 249(1):24–28

    Article  CAS  PubMed  Google Scholar 

  • Lemmer JT, Francis RM, Hackney KJ, Carpenter RL, Womack CJ (2007) Single muscle fiber gene expression of tPA, uPA, and PAI-1. Med Sci Sports Exerc 39(5):S469–S470

    Google Scholar 

  • Lisman T, de Groot PG, Meijers JC, Rosendaal FR (2005) Reduced plasma fibrinolytic potential is a risk factor for venous thrombosis. Blood 105(3):1102–1105

    Article  CAS  PubMed  Google Scholar 

  • Lluis F, Roma J, Suelves M, Parra M, Aniorte G, Gallardo E, Illa I, Rodriguez L, Hughes SM, Carmeliet P, Roig M, Munoz-Canoves P (2001) Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo. Blood 97(6):1703–1711

    Article  CAS  PubMed  Google Scholar 

  • Miles LA, Ellis V (2003) Alpha-enolase comes muscling in on plasminogen activation. Thromb Haemost 90(4):564–566

    CAS  PubMed  Google Scholar 

  • Salomaa V, Stinson V, Kark JD, Folsom AR, Davis CE, Wu KK (1995) Association of fibrinolytic parameters with early atherosclerosis. The ARIC Study. Atherosclerosis Risk in Communities Study. Circulation 91(2):284–290

    Article  CAS  PubMed  Google Scholar 

  • Shono N, Urata H, Saltin B, Mizuno M, Harada T, Shindo M, Tanaka H (2002) Effects of low intensity aerobic training on skeletal muscle capillary and blood lipoprotein profiles. J Atheroscler Thromb 9(1):78–85

    Article  CAS  PubMed  Google Scholar 

  • Silverstein MD, Heit JA, Mohr DN, Petterson TM, O’Fallon WM, Melton LJ 3rd (1998) Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med 158(6):585–593

    Article  CAS  PubMed  Google Scholar 

  • Smith FB, Lee AJ, Rumley A, Fowkes FG, Lowe GD (1995) Tissue-plasminogen activator, plasminogen activator inhibitor and risk of peripheral arterial disease. Atherosclerosis 115(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Smith FB, Lee AJ, Fowkes FG, Price JF, Rumley A, Lowe GD (1997) Hemostatic factors as predictors of ischemic heart disease and stroke in the Edinburgh Artery Study. Arterioscler Thromb Vasc Biol 17(11):3321–3325

    Article  CAS  PubMed  Google Scholar 

  • Smith DT, Hoetzer GL, Greiner JJ, Stauffer BL, DeSouza CA (2003) Effects of ageing and regular aerobic exercise on endothelial fibrinolytic capacity in humans. J Physiol 546(Pt 1):289–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stratton JR, Chandler WL, Schwartz RS, Cerqueira MD, Levy WC, Kahn SE, Larson VG, Cain KC, Beard JC, Abrass IB (1991) Effects of physical conditioning on fibrinolytic variables and fibrinogen in young and old healthy adults. Circulation 83(5):1692–1697

    Article  CAS  PubMed  Google Scholar 

  • Suelves M, Lopez-Alemany R, Lluis F, Aniorte G, Serrano E, Parra M, Carmeliet P, Munoz-Canoves P (2002) Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo. Blood 99(8):2835–2844

    Article  CAS  PubMed  Google Scholar 

  • Suelves M, Vidal B, Serrano AL, Tjwa M, Roma J, Lopez-Alemany R, Luttun A, de Lagran MM, Diaz-Ramos A, Jardi M, Roig M, Dierssen M, Dewerchin M, Carmeliet P, Munoz-Canoves P (2007) uPA deficiency exacerbates muscular dystrophy in MDX mice. J Cell Biol 178(6):1039–1051. doi:10.1083/jcb.200705127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van den Burg PJ, Hospers JE, van Vliet M, Mosterd WL, Bouma BN, Huisveld IA (1997) Effect of endurance training and seasonal fluctuation on coagulation and fibrinolysis in young sedentary men. J Appl Physiol 82(2):613–620

    PubMed  Google Scholar 

  • Wilkerson WR, Sane DC (2002) Aging and thrombosis. Semin Thromb Hemost 28(6):555–568

    Article  CAS  PubMed  Google Scholar 

  • Winther K, Hillegass W, Tofler GH, Jimenez A, Brezinski DA, Schafer AI, Loscalzo J, Williams GH, Muller JE (1992) Effects on platelet aggregation and fibrinolytic activity during upright posture and exercise in healthy men. Am J Cardiol 70(11):1051–1055

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Takeshita K, Kojima T, Takamatsu J, Saito H (2005) Aging and plasminogen activator inhibitor-1 (PAI-1) regulation: implication in the pathogenesis of thrombotic disorders in the elderly. Cardiovasc Res 66(2):276–285

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Meng X, Zhu Z, Yang X, Deng A (2004) Role of connective tissue growth factor in renal tubular epithelial-myofibroblast transdifferentiation and extracellular matrix accumulation in vitro. Life Sci 75(3):367–379

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant from the Michigan State University Intramural Research Grant Program and the College of Education. We would like to thank Dr. Mukta Webber and Erik Tokar for their helping with teaching us gel zymography. We would like to thank the Research Technology Support Facility at Michigan State University for their consultation and expertise on the microarray analyses.

Conflict of interest

There are no companies, manufacturers or outside organizations that will benefit from the results of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey T. Lemmer.

Additional information

Communicated by Fabio Fischetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, R.M., Romeyn, C.L., Coughlin, A.M. et al. Age and aerobic training status effects on plasma and skeletal muscle tPA and PAI-1. Eur J Appl Physiol 114, 1229–1238 (2014). https://doi.org/10.1007/s00421-014-2857-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2857-2

Keywords

Navigation