Skip to main content
Log in

Blood pressure regulation IV: adaptive responses to weightlessness

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

During weightlessness, blood and fluids are immediately shifted from the lower to the upper body segments, and within the initial 2 weeks of spaceflight, brachial diastolic arterial pressure is reduced by 5 mmHg and even more so by some 10 mmHg from the first to the sixth month of flight. Blood pressure thus adapts in space to a level very similar to that of being supine on the ground. At the same time, stroke volume and cardiac output are increased and systemic vascular resistance decreased, whereas sympathetic nerve activity is kept surprisingly high and similar to when ground-based upright seated. This was not predicted from simulation models and indicates that dilatation of the arteriolar resistance vessels is caused by mechanisms other than a baroreflex-induced decrease in sympathetic nervous activity. Results of baroreflex studies in space indicate that compared to being ground-based supine, the carotid (vagal)-cardiac interaction is reduced and sympathetic nerve activity, heart rate and systemic vascular resistance response more pronounced during baroreflex inhibition by lower body negative pressure. The future challenge is to identify which spaceflight mechanism induces peripheral arteriolar dilatation, which could explain the decrease in blood pressure, the high sympathetic nerve activity and associated cardiovascular changes. It is also a challenge to determine the cardiovascular risk profile of astronauts during future long-duration deep space missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BP:

Blood pressure

NASA:

National Aeronautics and Space Administration

References

  • Agostoni E, Gurtner G, Torri G, Rahn H (1966) Respiratory mechanics during submersion and negative pressure breathing. J Appl Physiol 21:251–258

    CAS  PubMed  Google Scholar 

  • Alfrey CP, Udden MM, Leach-Huntoon C, Driscoll T, Pickett MH (1996) Control of red blood cell mass in spaceflight. J Appl Physiol 81:98–104

    CAS  PubMed  Google Scholar 

  • Arbeille P, Fomina G, Roumy J, Alferova I, Tobal N, Herault S (2001) Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights. Eur J Appl Physiol 86:157–168

    Article  CAS  PubMed  Google Scholar 

  • Arborelius M Jr, Balldin UI, Lilja B, Lundgren CEG (1972) Hemodynamic changes in man during immersion with the head above water. Aerospace Med 43:592–598

    PubMed  Google Scholar 

  • Baevsky RM, Baranov VM, Funtova II, Diedrich A, Pashenko AV, Chernikova AG, Drescher J, Jordan J, Tank J (2007) Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J Appl Physiol 103:156–161

    Article  PubMed  Google Scholar 

  • Blaber AP, Goswami N, Bondar RL, Kassam MS (2011) Impairment of cerebral blood flow regulation in astronauts with orthostatic intolerance after flight. Stroke 42:1844–1850

    Article  PubMed  Google Scholar 

  • Blomqvist CG, Stone HL (1983) Cardiovascular adjustments to gravitational stress. In: Handbook of physiology, the cardiovascular system, peripheral circulation and organ blood flow, vol 2. Am. Physiol. Soc., Bethesda, pp 1025–1063

  • Buckey JC Jr, Gaffney FA, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Yancy CW Jr, Meyer DM, Blomqvist CG (1996a) Central venous pressure in space. J Appl Physiol 81:19–25

    PubMed  Google Scholar 

  • Buckey JC Jr, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Moore WE, Gaffney FA (1996b) Orthostatic intolerance after spaceflight. J Appl Physiol 81:7–18

    PubMed  Google Scholar 

  • Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jones DW, Materson BJ, Oparil S, Wright Jr JT, Roccella EJ, National High Blood Pressure Education Program Coordinating Committee (2003) Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 42:1206–1252

    Google Scholar 

  • Convertino VA, Doerr DF, Eckberg DL, Fritsch JM, Vernikos-Danellis J (1990) Head-down bed rest impairs vagal baroreflex responses and provokes orthostatic hypotension. J Appl Physiol 68:1458–1464

    CAS  PubMed  Google Scholar 

  • Cooke WH, Ames JE IV, Crossman AA, Cox JF, Kuusela TA, Tahvanainen KUO, Moon LB, Drescher J, Baisch FJ, Mano T, Levine BD, Blomqvist CG, Eckberg DL (2000) Nine months in space: effects on human autonomic cardiovascular regulation. J Appl Physiol 89:1039–1045

    CAS  PubMed  Google Scholar 

  • Cowley AW, Skelton MM (1991) Dominance of colloid osmotic pressure in renal excretion after isotonic volume expansion. Am J Physiol 261:H1214–H1225

    CAS  PubMed  Google Scholar 

  • Cox JF, Tahvanainen KUO, Kuusela TA, Levine BD, Cooke WH, Mano T, Iwase S, Saito M, Sugiyama Y, Ertl AC, Biaggioni I, Diedrich A, Robertson RM, Zuckerman JH, Lane LD, Ray CA, White RJ, Pawelczyk JA, Buckey JC, Baisch FJ, Blomqvist CG, Robertson D, Eckberg DL (2002) Influence of microgravity on astronauts’ sympathetic and vagal responses to Valsalva’s manoeuvre. J Physiol 538:309–320

    Article  CAS  PubMed  Google Scholar 

  • Di Rienzo M, Castiglioni P, Iellamo F, Volterrani M, Pagani M, Mancia G, Karemaker JM, Parati G (2008) Dynamic adaptation of cardiac baroreflex sensitivity to prolonged exposure to microgravity: data from a 16-day spaceflight. J Appl Physiol 105:1569–1575

    Article  PubMed  Google Scholar 

  • Dibona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77:75–197

    CAS  PubMed  Google Scholar 

  • Echt M, Lange L, Gauer OH (1974) Changes in peripheral venous tone and central transmural venous pressure during immersion in a thermo-neutral bath. Pflugers Arch 352:211–217

    Article  CAS  PubMed  Google Scholar 

  • Eckberg DL (2003) Bursting into space: alterations of sympathetic control by space travel. Acta Physiol Scand 177:299–311

    Article  CAS  PubMed  Google Scholar 

  • Eckberg DL, Sleight P (1992) Human baroreflexes in health and disease. Oxford University Press, NY

    Google Scholar 

  • Eckberg DL, Halliwill JR, Beigthol LA, Brown TE, Taylor JA, Goble R (2010) Human vagal baroreflex mechanisms in space. J Physiol 588:1129–1138

    Article  CAS  PubMed  Google Scholar 

  • Epstein M (1978) Renal effects of head-out water immersion in man: implications for an understanding of volume homeostasis. Physiol Rev 58:529–581

    CAS  PubMed  Google Scholar 

  • Epstein M (1992) Renal effects of head-out water immersion in humans: a 15-year update. Physiol Rev 72:563–621

    CAS  PubMed  Google Scholar 

  • Ertl AC, Diedrich A, Biaggioni I, Levine BD, Robertson RM, Cox JF, Zuckerman JH, Pawelczyk JA, Ray CA, Buckey JC Jr, Lane LD, Shiavi R, Gaffney FA, Costa F, Holt C, Blomqvist CG, Eckberg DL, Baisch FJ, Robertson D (2002) Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J Physiol 538:321–329

    Article  CAS  PubMed  Google Scholar 

  • Foldager N, Andersen TAE, Jessen FB, Ellegaard P, Stadeager C, Videbaek R, Norsk P (1996) Central venous pressure in humans during microgravity. J Appl Physiol 81:408–412

    CAS  PubMed  Google Scholar 

  • Fortney SM, Hyatt KH, Davis JE, Vogel JM (1991) Changes in body fluid compartments during a 28-day bed rest. Aviat Space Environ Med 62:97–104

    CAS  PubMed  Google Scholar 

  • Fritsch-Yelle JM, Charles JB, Jones MM, Wood ML (1996) Microgravity decreases heart rate and arterial pressure in humans. J Appl Physiol 80:910–914

    CAS  PubMed  Google Scholar 

  • Gabrielsen A, Norsk P (2007) Effect of spaceflight on the subcutaneous venoarteriolar reflex in the human lower leg. J Appl Physiol 103:959–962

    Article  PubMed  Google Scholar 

  • Gabrielsen A, Johansen LB, Norsk P (1993) Central cardiovascular pressures during graded water immersion in humans. J Appl Physiol 75:581–585

    CAS  PubMed  Google Scholar 

  • Gauer OH (1961) Definitions: magnitude, direction, and time course of accelerative forces. In: Gauer OH, Zuidema GD (eds) Gravitational stress in aerospace medicine. JA Churchill Ltd, London, pp 10–15

    Google Scholar 

  • Gisolf J, Immink RV, van Lieshout JJ, Stok WJ, Karemaker JM (2005) Orthostatic blood pressure control before and after spaceflight determined by time-domain baroreflex method. J Appl Physiol 98:1682–1690

    Article  CAS  PubMed  Google Scholar 

  • Glaister DH, Prior ARJ (1999) The effects of long duration acceleration. In: Ernsting J, Nicholson AN, Rainford DJ (eds) Aviation medicine, 3rd edn. Butterworth-Heinemann, UK, pp 128–147

  • Hansen TW, Jeppesen J, Rasmussen S, Ibsen H, Torp-Pedersen C (2005) Ambulatory blood pressure and mortality. A population-based study. Hypertension 45:499–504

    Article  CAS  PubMed  Google Scholar 

  • Hargens AR, Tipton CM, Gollnick PD, Mubarak SJ, Tucker BJ, Akeson WH (1983) Fluid shifts and muscle function in humans during acute simulated weightlessness. J Appl Physiol 54:1003–1009

    CAS  PubMed  Google Scholar 

  • Harrison MH (1985) Effects of thermal stress and exercise on blood volume in humans. Physiol Rev 65:149–209

    CAS  PubMed  Google Scholar 

  • Herault S, Fomina G, Alferova I, Kotovskaya A, Poliakov V, Arbeille P (2000) Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with an without thigh cuffs (bracelets). Eur J Appl Physiol 81:384–390

    Article  CAS  PubMed  Google Scholar 

  • Hughson RL, Maillet A, Gharib C, Fortrat JO, Yamamoto Y, Pavy-LeTraon A, Riviere D, Guell A (1994a) Reduced spontaneous baroreflex response slope during lower body negative pressure after 28 days of head-down bed rest. J Appl Physiol 77:69–77

    CAS  PubMed  Google Scholar 

  • Hughson RL, Yamamoto Y, Blaber AP, Maillet A, Fortrat JO, Pavy-LeTraon A, Marini JF, Guell A, Gharib C (1994b) Effect of 28-day head-down bed rest with countermeasures on heart rate variability during LBNP. Aviat Space Environ Med 65:293–300

    CAS  PubMed  Google Scholar 

  • Hughson RL, Shoemaker JH, Blaber AP, Arbeille P, Greaves DK, Pereira-Junior PP, Xu D (2011) Cardiovascular regulation during long-duration spaceflights to the International Space Station. J Appl Physiol 112:719–727

    Article  PubMed  Google Scholar 

  • Hunt NC (1967) Positive pressure breathing during water immersion. Aerospace Med July: 731–735

  • Iwase S, Mano T, Cui J, Kitazawa H, Kamiya A, Miyazaki S, Sugiyama Y, Mukai C, Nagaoka S (1999) Sympathetic outflow to muscle in humans during short periods of microgravity produced by parabolic flight. Am J Physiol 277:R419–R426

    CAS  PubMed  Google Scholar 

  • Johansen LB, Foldager N, Stadeager C, Kristensen MS, Bie P, Warberg J, Kamegai M, Norsk P (1992) Plasma volume, fluid shifts, and renal responses in humans during 12 h of head-out water immersion. J Appl Physiol 73:539–544

    CAS  PubMed  Google Scholar 

  • Johansen LB, Bie P, Warberg J, Christensen NJ, Norsk P (1995) Role of hemodilution on renal responses to water immersion in humans. Am J Physiol 269:R1068–R1076

    CAS  PubMed  Google Scholar 

  • Johansen LB, Gharib C, Allevard AM, Sigaudo D, Christensen NJ, Drummer C, Norsk P (1997) Hematocrit, plasma volume and noradrenaline in humans during simulated weightlessness for 42 days. Clin Physiol 17:203–210

    Article  CAS  PubMed  Google Scholar 

  • Johansen LB, Pump B, Warberg J, Christensen NJ, Norsk P (1998a) Preventing hemodilution abolishes natriuresis of water immersion in humans. Am J Physiol 275:R879–R888

    CAS  PubMed  Google Scholar 

  • Johansen LB, Videbaek R, Hammerum M, Norsk P (1998b) Underestimation of plasma volume changes in humans by hematocrit/hemoglobin method. Am J Physiol 274:R126–R130

    CAS  PubMed  Google Scholar 

  • Johnson RL, Hoffler GW, Nicogossian AE, Bergman Jr SA, Jackson MM (1977) Lower body negative pressure: Third manned Skylab mission. In: Johnston RS, Dietlein LF (eds) Biomedical results from Skylab, NASA SP, vol 377, pp 284–312

  • Kakurin LI, Lobachik VI, Mikhailov VM, Senkevich YA (1976) Antiorthostatic hypokinesia as a method of weightlessness simulation. Aviat Space Environ Med 47:1083–1086

    CAS  PubMed  Google Scholar 

  • Kamiya A, Iwase S, Kitazawa H, Mano T, Vinogradova OL, Kharchenko IB (2000) Baroreflex control of muscle sympathetic nerve activity after 120 days of 6º head-down bed rest. Am J Physiol 278:R445–R452

    CAS  Google Scholar 

  • Katkov VE, Kakurin LI, Chestukhin VV, Kirsch K (1987) Central circulation during exposure to 7-day microgravity (head-down tilt, immersion, space flight). Physiologist 30(1 suppl):S36–S41

    Google Scholar 

  • Kirsch KA, Rocker L, Gauer OH, Krause R, Leach C, Wicke HJ, Landry R (1984) Venous pressure in man during weightlessness. Science 225:218–219

    Article  CAS  PubMed  Google Scholar 

  • Krasney JA, Hajduczok G, Miki K, Claybaugh JR, Sondeen JL, Pendergast DR, Hong SK. (1989). Head-out water immersion: a critical evaluation of the Gauer–Henry hypothesis. In: Claybaugh JR, Meade CE (eds) Hormonal regulation of fluid and electrolytes. Plenum Publishing Corp, New York, pp 147–185

  • Leach CS, Alfrey CP, Suki WN, Leonard JI, Rambaut PC, Inners D, Smith SM, Lane HW, Krauhs JM (1996) Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol 81:105–116

    CAS  PubMed  Google Scholar 

  • Levine BD, Lane LD, Watenpaugh DE, Gaffney FA, Buckey JC, Blomqvist CG (1996) Maximal exercise performance after adaptation to microgavity. J Appl Physiol 81:686–694

    CAS  PubMed  Google Scholar 

  • Linnarsson D, Spaak J, Sundblad P (2008) Baroreflex impairment during rapid posture changes at rest and exercise after 120 days of bed rest. Eur J Appl Physiol 96:37–45

    Article  Google Scholar 

  • Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, Tarver WJ, Dervay JP, Hamilton DR, Sargsyan A, Phillips JL, Tran D, Lipsky W, Choi J, Stern C, Kuyumjian R, Polk JD (2011) Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in Astronauts after long-duration space flight. Ophthalmology 118:2058–2069

    Article  PubMed  Google Scholar 

  • Mead J, Gaensler EA (1959) Esophageal and pleural pressures in man, upright and supine. J Appl Physiol 14:81–83

    CAS  PubMed  Google Scholar 

  • Meck JV, Waters WW, Ziegler MG, deBlock HF, Mills PJ, Robertson D, Huang PL (2004) Mechanisms of postflight orthostatic hypotension: low α1-adrenergic receptor responses before flight and central autonomic dysregulation postflight. Am J Physiol 286:H1486–H1495

    CAS  Google Scholar 

  • Meck JV, Dreyer SA, Warren LE (2009) Long-duration head-down bed rest: project overview, vital signs, and fluid balance. Aviat Space Environ Med 80(5 Suppl):A1–8

    Google Scholar 

  • Navasiolava NM, Custaud MA, Tomilovskaya ES, Larina IM, Mano T, Gauquelin-Koch G, Gharib C, Kozlovskaya IB (2011) Long-term dry immersion: review and prospects. Eur J Appl Physiol 11:1235–1260

    Article  Google Scholar 

  • Newton I (1687) Philosophiæ Naturalis Prinathematica. S Pepys Reg Soc Præses, London

  • Nicogossian AE, Huntoon CL, Pool SL (1994) Space physiology and medicine, 3rd edn. Lea Fibiger, TX

  • Norsk P (1992) Gravitational stress and volume regulation. Clin Physiol 12:505–526

    Article  CAS  PubMed  Google Scholar 

  • Norsk P (1996) Role of arginine vasopressin in the regulation of extracellular fluid volume. Med Sci Sports Exerc 28(10 Suppl):S36–41

    Google Scholar 

  • Norsk P, Christensen NJ (2009) The paradox of systemic vasodilatation and sympathetic nervous stimulation in space. Resp Physiol Neurobiol 169S:S26–S29

    Article  Google Scholar 

  • Norsk P, Epstein M (1991) Manned space flight and the kidney. Am J Nephrol 11:81–97

    Article  CAS  PubMed  Google Scholar 

  • Norsk P, Ellegaard P, Videbaek R, Stadeager C, Jessen F, Johansen LB, Kristensen MS, Kamegai M, Warberg J, Christensen NJ (1993a) Arterial pulse pressure and vasopressin release in humans during lower body negative pressure. Am J Physiol 264:R1024–R1030

    CAS  PubMed  Google Scholar 

  • Norsk P, Stadeager C, Johansen LB, Warberg J, Bie P, Foldager N, Christensen NJ (1993b) Volume-homeostatic mechanisms in humans during a 12-h posture change. J Appl Physiol 75:349–356

    CAS  PubMed  Google Scholar 

  • Norsk P, Drummer C, Rocker L, Strollo F, Christensen NJ, Warberg J, Bie P, Stadeager C, Johansen LB, Heer M, Gunga H-C, Gerzer R (1995) Renal and endocrine responses in humans to isotonic saline infusion during microgravity. J Appl Physiol 78:2253–2259

    Article  CAS  PubMed  Google Scholar 

  • Norsk P, Damgaard M, Petersen L, Gybel M, Pump B, Gabrielsen A, Christensen NJ (2006) Vasorelaxation in space. Hypertension 47:69–73

    Article  CAS  PubMed  Google Scholar 

  • O’Leary DS, Seamans DP (1993) Effect of exercise on autonomic mechanisms of baroreflex control of heart rate. J Appl Physiol 75:2251–2257

    PubMed  Google Scholar 

  • Parazynski SE, Hargens AR, Tucker B, Aratow M, Styf J, Crenshaw A (1991) Transcapillary fluid shifts in tissues of the head and neck during and after simulated microgravity. J Appl Physiol 71:2469–2475

    CAS  PubMed  Google Scholar 

  • Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101:143–194

    Article  CAS  PubMed  Google Scholar 

  • Petersen LG, Damgaard M, Petersen JCG, Norsk P (2011) Mechanisms of increase in cardiac output during acute weightlessness in humans. J Appl Physiol 111:407–411

    Article  PubMed  Google Scholar 

  • Platts SH, Martin DS, Stenger MB, Perez SA, Ribeiro LC, Summers R, Meck JV (2009) Cardiovascular adaptations to long-duration head-down bed rest. Aviat Space Environ Med 80(5 Suppl):A29–A36

    Google Scholar 

  • Prisk GK, Guy HJB, Elliott AR, Deutschman RA III, West JB (1993) Pulmonary diffusion capacity, capillary blood volume, and cardiac output during sustained microgravity. J Appl Physiol 75:15–26

    CAS  PubMed  Google Scholar 

  • Pump B, Videbaek R, Gabrielsen A, Norsk P (1999) Arterial pressure in humans during weightlessness induced by parabolic flights. J Appl Physiol 87:928–932

    CAS  PubMed  Google Scholar 

  • Pump B, Kamo T, Gabrielsen A, Bie P, Christensen NJ, Norsk P (2001a) Central volume expansion is pivotal for sustained decrease in heart rate during seated to supine posture change. Am J Physiol 281:H1274–H1279

    CAS  Google Scholar 

  • Pump B, Kamo T, Gabrielsen A, Norsk P (2001b) Mechanisms of hypotensive effects of a posture change from seated to supine in humans. Acta Physiol Scand 171:405–412

    Article  CAS  PubMed  Google Scholar 

  • Pump B, Shiraishi M, Gabrielsen A, Bie P, Christensen NJ, Norsk P (2001c) Cardiovascular effects of static carotid baroreceptor stimulation during water immersion in humans. Am J Physiol 280:H2607–H2615

    CAS  Google Scholar 

  • Reid MB, Loring SH, Banzett RB, Mead J (1986) Passive mechanics of upright human chest wall during immersion from hips to neck. J Appl Physiol 60:1561–1570

    CAS  PubMed  Google Scholar 

  • Robertson D, Convertino VA, Vernikos J (1994) The sympathetic nervous system and the physiologic consequences of spaceflight: a hypothesis. Am J Med Sci 308:126–132

    Article  CAS  PubMed  Google Scholar 

  • Rowell LB (1993) Human cardiovascular control. Oxford University Press, Inc, UK

  • Shiraishi M, Schou M, Gybel M, Christensen NJ, Norsk P (2002) Comparison of acute cardiovascular responses to water immersion and head-down tilt in humans. J Appl Physiol 92:264–268

    PubMed  Google Scholar 

  • Shiraishi M, Kamo T, Nemoto S, Narita M, Kamegai M, Baevsky RM, Funtova II (2003) Blood pressure variability during 120-day head-down bed rest in humans. Biomed Pharmacother 57(Suppl 1):35s–38s

    Article  PubMed  Google Scholar 

  • Shykoff BE, Farhi LE, Olszowka AJ, Pendergast DR, Rokitka MA, Eisenhardt CG, Morin RA (1996) Cardiovascular response to submaximal exercise in sustained microgravity. J Appl Physiol 81:26–32

    CAS  PubMed  Google Scholar 

  • Simons DG (1961) Subgravity and weightlessness. In: Gauer OH, Zuidema GD (eds) Gravitational stress in aerospace medicine. Churchill, London, pp 189–201

  • Stadeager C, Johansen LB, Warberg J, Christensen NJ, Foldager N, Bie P, Norsk P (1992) Circulation, kidney function and volume-regulating hormones during prolonged water immersion in humans. J Appl Physiol 73:530–538

    CAS  PubMed  Google Scholar 

  • Sulzman FM (1996) Overview. J Appl Physiol 81:3–6

    CAS  PubMed  Google Scholar 

  • Thornton WE, Hoffler GW, Rummel JA (1977) Anthropometric changes and fluid shifts. In: Johnston RS, Dietlein LF (eds) Biomedical results from Skylab. NASA SP, vol 377, pp 330–338

  • Verheyden B, Liu J, Beckers F, Aubert AE (2010) Operational point of neural cardiovascular regulation in humans up to 6 months in space. J Appl Physiol 108:646–654

    Article  CAS  PubMed  Google Scholar 

  • Videbaek R, Norsk P (1997) Atrial distension in humans during microgravity induced by parabolic flights. J Appl Physiol 83:1862–1866

    CAS  PubMed  Google Scholar 

  • Voogel AJ, Stok WJ, Pretorius PJ, van Montfrans GA, Langewouters GJ, Karemaker JM (1997) Circadian blood pressure and systemic haemodynamics during 42 days of 6º head-down tilt. Acta Physiol Scand 161:71–80

    Article  CAS  PubMed  Google Scholar 

  • Watenpaugh DE, Buckey JC, Lane LD, Gaffney FA, Levine BD, Moore WE, Wright SJ, Blomqvist CG (2001) Effects of spaceflight on human calf hemodynamics. J Appl Physiol 90:1552–1558

    CAS  PubMed  Google Scholar 

  • West JB (1984) Spacelab—the coming of age of space physiology research. J Appl Physiol 57:1625–1631

    CAS  PubMed  Google Scholar 

  • White RJ, Averner M (2001) Humans in space. Nature 409:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Whitson PA, Charles JB, Williams WJ, Cintrón NM (1995) Changes in sympathoadrenal response to standing in humans after spaceflight. J Appl Physiol 79:428–433

    CAS  PubMed  Google Scholar 

  • Zhang LF (2001) Vascular adaptation to microgravity: what have we learned? J Appl Physiol 91:2415–2430

    CAS  PubMed  Google Scholar 

  • Zhang LF (2013) Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment. Eur J Appl Physiol 113:2873–2895

    Article  PubMed  Google Scholar 

  • Zier M, Hüser D (1996) Some remarks on weightlessness. Low G 7:12–13

    Google Scholar 

Download references

Acknowledgments

This review would not have been possible, were it not for the support of Ali Asmar, Niels Juel Christensen and Niels-Henrik Holstein Rathlou (University of Copenhagen, Copenhagen, Denmark) and Neal Pellis (Division of Space Life Sciences, Universities Space Research Association, Houston, TX, USA) and David Baumann (Biomedical Research and Environmental Sciences Division, NASA-Johnson Space Center, Houston, TX, USA).

Conflict of interest

The author has no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Norsk.

Additional information

Communicated by Nigel A.S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norsk, P. Blood pressure regulation IV: adaptive responses to weightlessness. Eur J Appl Physiol 114, 481–497 (2014). https://doi.org/10.1007/s00421-013-2797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2797-2

Keywords

Navigation