Skip to main content

Advertisement

Log in

Destrin deletion enhances the bone loss in hindlimb suspended mice

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Destrin, also known as actin depolymerizing factor (ADF), is a member of the ADF/Cofilin/destrin superfamily that has the ability to rapidly depolymerize F-actin in a stoichiometric manner. Remodeling of the actin cytoskeleton through actin dynamics (assembly and disassembly of filamentous actin) is known to be essential for numerous basic biological processes including bone formation. The aim of current study was to elucidate whether destrin was involved in the progression of bone loss induced by modeled microgravity. We used the hindlimb suspension (HLS) mice model to simulate microgravity in vivo. Exposure to HLS in mice enhanced femur destrin expression. Destrin deletion in Dstn −/− mutant mice enhanced HLS-induced reduction of BMD, ultimate load, stiffness, trabecular thickness, trabecular number, and bone volume fraction in femur, but did not affect them under control static condition. The Rotary wall vessel bioreactor was used to model microgravity in vitro. Exposure to modeled microgravity in cultured 2T3 murine osteoblast precursor cells upregulated destrin expression. RNAi-mediated destrin knockdown enhanced the microgravity-induced reduction of osteoblastic proliferation and differentiation significantly. In conclusion, for the first time we demonstrated that destrin deletion enhances the bone loss in hindlimb suspended mice. Destrin may be a potential target for the prevention or management of microgravity-induced bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blanc S, Normand S, Ritz P, Pachiaudi C, Vico L, Gharib C, Gauquelin-Koch G (1998) Energy and water metabolism, body composition, and hormonal changes induced by 42 days of enforced inactivity and simulated weightlessness. J Clin Endocrinol Metab 83:4289–4297

    Article  PubMed  CAS  Google Scholar 

  • Caillot-Augusseau A, Lafage-Proust MH, Soler C, Pernod J, Dubois F, Alexandre C (1998) Bone formation and resorption biological markers in osmonauts during and after a 180-day space flight (Euromir 95). Clin Chem 44:578–585

    PubMed  CAS  Google Scholar 

  • Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136:1307–1322

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet G, Vico L, Bouillon R (2001) Space flight: a challenge for normal bone homeostasis. Crit Rev Eukaryot Gene Expr 11:131–144

    Article  PubMed  CAS  Google Scholar 

  • Chin YR, Toker A (2010) The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration. Mol Cell 38:333–344

    Article  PubMed  CAS  Google Scholar 

  • Fowler JF Jr (1991) Physiological changes during spaceflight. Cutis 48:291–295

    PubMed  Google Scholar 

  • Galkin VE, Orlova A, Kudryashov DS, Solodukhin A, Reisler E, Schröder GF, Egelman EH (2011) Remodeling of actin filaments by ADF/cofilin proteins. Proc Natl Acad Sci USA 108:20568–20572

    Article  PubMed  CAS  Google Scholar 

  • Gershkovich PM, Gershkovich IuG, Buravkova LB (2011) Expression of cytoskeleton genes in culture of human mesenchymal stromal cells in different periods of simulating the effects of microgravity. Aviakosm Ekolog Med 45:39–41

    PubMed  CAS  Google Scholar 

  • Gershovich PM, Gershovich IuG, Buravkova LB (2009) Cytoskeleton structures and adhesion properties of human stromal precursors under conditions of simulated microgravity. Tsitologiia 51:896–904

    PubMed  CAS  Google Scholar 

  • Glotzer M (2010) Cytokinesis: integrating signaling, the cytoskeleton, and membranes to create new daughter cells. Semin Cell Dev Biol 21:865

    Article  PubMed  Google Scholar 

  • Guo D, Keightley A, Guthrie J, Veno PA, Harris SE, Bonewald LF (2010) Identification of osteocyte-selective proteins. Proteomics 10:3688–3698

    Article  PubMed  CAS  Google Scholar 

  • Higuchi C, Nakamura N, Yoshikawa H, Itoh K (2009) Transient dynamic actin cytoskeletal change stimulates the osteoblastic differentiation. J Bone Miner Metab 27:158–167

    Article  PubMed  CAS  Google Scholar 

  • Hughes-Fulford M (2003) Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32:1585–1593

    Article  PubMed  CAS  Google Scholar 

  • Hughes-Fulford M, Lewis ML (1996) Effects of microgravity on osteoblast growth activation. Exp Cell Res 224:103–109

    Article  PubMed  CAS  Google Scholar 

  • Katsumata T, Nakamura T, Ohnishi H, Sakurawa T (1995) Intermittent cyclical etidronate treatment maintains the mass, structure and the mechanical property of bone in ovariectomized rats. J Bone Miner Res 10:921–931

    Article  PubMed  CAS  Google Scholar 

  • Kuure S, Cebrian C, Machingo Q, Lu BC, Chi X, Hyink D, D’Agati V, Gurniak C, Witke W, Costantini F (2010) Actin depolymerizing factors cofilin1 and destrin are required for ureteric bud branching morphogenesis. PLoS Genet 6:e1001176

    Article  PubMed  Google Scholar 

  • Le Beyec J, Xu R, Lee SY, Nelson CM, Rizki A, Alcaraz J, Bissell MJ (2007) Cell shape regulates global histone acetylation in human mammary epithelial cells. Exp Cell Res 313:3066–3075

    Article  PubMed  Google Scholar 

  • Makihira S, Kawahara Y, Yuge L, Mine Y, Nikawa H (2008) Impact of the microgravity environment in a 3-dimensional clinostat on osteoblast- and osteoclast-like cells. Cell Biol Int 32:1176–1181

    Article  PubMed  CAS  Google Scholar 

  • McGough A, Pope B, Chiu W, Weeds A (1997) Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol 138:771–781

    Article  PubMed  CAS  Google Scholar 

  • Moran JL, Li Y, Hill AA, Mounts WM, Miller CP (2002) Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling. Physiol Genomics 10:103–111

    PubMed  CAS  Google Scholar 

  • Mseka T, Bamburg JR, Cramer LP (2007) ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization. J Cell Sci 120:4332–4344

    Article  PubMed  CAS  Google Scholar 

  • Nabavi N, Khandani A, Camirand A, Harrison RE (2011) Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion. Bone 49:965–974

    Article  PubMed  Google Scholar 

  • Nadiminty N, Lou W, Lee SO, Mehraein-Ghomi F, Kirk JS, Conroy JM, Zhang H, Gao AC (2006) Prostate-specific antigen modulates genes involved in bone remodeling and induces osteoblast differentiation of human osteosarcoma cell line SaOS-2. Clin Cancer Res 12:1420–1430

    Article  PubMed  CAS  Google Scholar 

  • Norvell SM, Ponik SM, Bowen DK, Gerard R, Pavalko FM (2004) Fluid shear stress induction of COX-2 protein and prostaglandin release in cultured MC3T3-E1 osteoblasts does not require intact microfilaments of microtubules. J Appl Physiol 96:957–966

    Article  PubMed  CAS  Google Scholar 

  • Oganov VS, Skripnikova IA, Novikov VE, Bakulin AV, Kabitskaia OE, Murashko LM (2011) Characteristics of local human skeleton reactions to microgravity and drug treatment of osteoporosis in clinic. Aviakosm Ekolog Med 45:16–21

    PubMed  CAS  Google Scholar 

  • Pan Z, Yang J, Guo C, Shi D, Shen D, Zheng Q, Chen R, Xu Y, Xi Y, Wang J (2008) Effects of hindlimb unloading on ex vivo growth and osteogenic/adipogenic potentials of bone marrow-derived mesenchymal stem cells in rats. Stem Cells Dev 17:795–804

    Article  PubMed  CAS  Google Scholar 

  • Riggs BL, Khosla S, Melton LJ 3rd (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773

    Article  PubMed  CAS  Google Scholar 

  • Rösner H, Wassermann T, Möller W, Hanke W (2006) Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. Protoplasma 229:225–234

    Article  PubMed  Google Scholar 

  • Sakai D, Kii I, Nakagawa K, Matsumoto HN, Takahashi M, Yoshida S, Hosoya T, Takakuda K, Kudo A (2011) Remodeling of actin cytoskeleton in mouse periosteal cells under mechanical loading induces periosteal cell proliferation during bone formation. PLoS One 6:e24847

    Article  PubMed  CAS  Google Scholar 

  • Serezani CH, Kane S, Medeiros AI, Cornett AM, Kim SH, Marques MM, Lee SP, Lewis C, Bourdonnay E, Ballinger MN, White ES, Peters-Golden M (2012) PTEN directly activates the actin depolymerization factor cofilin-1 during PGE2-mediated inhibition of phagocytosis of fungi. Sci Signal 5:ra12

    Google Scholar 

  • Smith SM, Nillen JL, Leblanc A, Lipton A, Demers LM, Lane HW, Leach CS (1998) Collagen cross-link excretion during space flight and bed rest. J Clin Endocrinol Metab 83:3584–3591

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Wastney ME, O’Brien KO, Morukov BV, Larina IM, Abrams SA, Davis-Street JE, Oganov V, Shackelford LC (2005) Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station. J Bone Miner Res 20:208–218

    Article  PubMed  CAS  Google Scholar 

  • Uhthoff HK, Jaworski ZF (1978) Bone loss in response to long-term immobilisation. J Bone Joint Surg Br 60:420–429

    PubMed  Google Scholar 

  • Verdoni AM, Aoyama N, Ikeda A, Ikeda S (2008) Effect of destrin mutations on the gene expression profile in vivo. Physiol Genomics 34:9–21

    Article  PubMed  CAS  Google Scholar 

  • Zayzafoon M, Gathings WE, Mcdonald JM (2004) Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology 145:2421–2432

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Ryder KD, Bethel JA, Ramirez R, Duncan RL (2006) PTH-induced actin depolymerization increases mechanosensitive channel activity to enhance mechanically stimulated Ca2+ signaling in osteoblasts. J Bone Miner Res 21:1729–1737

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Xing Zou.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuang, F., Sun, Y., Yang, HH. et al. Destrin deletion enhances the bone loss in hindlimb suspended mice. Eur J Appl Physiol 113, 403–410 (2013). https://doi.org/10.1007/s00421-012-2451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2451-4

Keywords

Navigation