Skip to main content

Advertisement

Log in

Transient dynamic actin cytoskeletal change stimulates the osteoblastic differentiation

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Dynamic cytoskeletal changes appear to be one of intracellular signals that control cell differentiation. To test this hypothesis, we examined the effects of short-term actin cytoskeletal changes on osteoblastic differentiation. We found an actin polymerization interfering reagent, cytochalasin D, promoted osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells. We also found that these effects were mediated by the protein kinase D (PKD) pathway. Short-term cytochalasin D treatment increased alkaline phosphatase (ALP) activity, osteocalcin (OCN) secretion, and mineralization of the extracellular matrix in MC3T3-E1 cells, with temporary changes in actin cytoskeleton. Furthermore, the disruption of actin cytoskeleton induced phosphorylation of 744/748 serine within the activation loop of PKD in a dose-dependent manner. The protein kinase C (PKC)/PKD inhibitor Go6976 suppressed cytochalasin D-induced acceleration of osteoblastic differentiation, whereas Go6983, a specific inhibitor of conventional PKCs, did not. Involvement of PKD signaling was confirmed by using small interfering RNA to knock down PKD. In addition, another actin polymerization interfering reagent, latrunculin B, also stimulated ALP activity and OCN secretion with PKD activation. On the other hand, the present data suggested that transient dynamic actin cytoskeletal reorganization could be a novel cellular signal that directly stimulated osteoblastic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang S, Ingber DE (1999) The structural and mechanical complexity of cell-growth control. Nat Cell Biol 1:E131–E138

    Article  PubMed  CAS  Google Scholar 

  2. Boland S, Boisvieux-Ulrich E, Houcine O, Baeza-Squiban A, Pouchelet M, Schoëvaërt D, Marano F (1996) TGF beta 1 promotes actin cytoskeleton reorganization and migratory phenotype in epithelial tracheal cells in primary culture. J Cell Sci 109:2207–2219

    PubMed  CAS  Google Scholar 

  3. Pavalko FM, Chen NX, Turner CH, Burr DB, Atkinson S, Hsieh YF, Qiu J, Duncan RL (1998) Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton–integrin interactions. Am J Physiol 275:C1591–C1601

    PubMed  CAS  Google Scholar 

  4. Jamora C, Fuchs E (2002) Intercellular adhesion, signaling and the cytoskeleton. Nat Cell Biol 4:101–108

    Article  CAS  Google Scholar 

  5. Howe AK, Juliano RL (2000) Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase. Nat Cell Biol 2:593–600

    Article  PubMed  CAS  Google Scholar 

  6. Aplin AE, Juliano RL (1999) Integrin and cytoskeletal regulation of growth factor signaling to the MAP kinase pathway. J Cell Sci 112:695–706

    PubMed  CAS  Google Scholar 

  7. Zeng C, Morrison AR (2001) Disruption of the actin cytoskeleton regulates cytokine-induced iNOS expression. Am J Physiol Cell Physiol 281:C932–C940

    PubMed  CAS  Google Scholar 

  8. Sotiropoulos A, Gineitis D, Copeland J, Treisman R (1999) Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98:159–169

    Article  PubMed  CAS  Google Scholar 

  9. Irigoyen JP, Besseer D, Nagamine Y (1997) Cytoskeleton reorganization induces the urokinase-type plasminogen activator gene via the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. J Biol Chem 272:1904–1909

    Article  PubMed  CAS  Google Scholar 

  10. Wei L, Wang L, Carson JA, Agan JE, Imanaka-Yoshida K, Schwartz RJ (2001) β1 integrin and organized actin filaments facilitates cardiomyocyte-specific RhoA-dependent activation of the skeletal α-actin promoter. FASEB J 15:785–797

    Article  PubMed  CAS  Google Scholar 

  11. Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK (2001) Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem 276:341–347

    Article  PubMed  CAS  Google Scholar 

  12. Varedi M, Ghahary A, Scott PG, Tredget EE (1997) Cytoskeleton regulates expression of genes for transforming growth factor-β1 and extracellular matrix proteins in dermal fibroblasts. J Cell Physiol 172:192–199

    Article  PubMed  CAS  Google Scholar 

  13. Miyamato S, Teramoto H, Gutkind JS, Yamada KM (1996) Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 135:1633–1642

    Article  Google Scholar 

  14. Vinall RL, Lo SH, Reddi AH (2002) Regulation of articular chondrocyte phenotype by bone morphogenetic protein 7, interleukin 1, and cellular context is dependent on the cytoskeleton. Exp Cell Res 272:32–44

    Article  PubMed  CAS  Google Scholar 

  15. Zhang A, Messana J, Hwang NS, Elisseeff JH (2006) Reorganization of actin filaments enhances chondrogenic differentiation of cells derived from murine embryonic stem cells. Biochem Biophys Res Commun 348:421–427

    Article  PubMed  CAS  Google Scholar 

  16. Lim YB, Kang SS, Park TK, Lee YS, Chun JS, Sonn JK (2000) Disruption of actin cytoskeleton induces chondrogenesis of mesenchymal cells by activating protein kinase C-α signaling. Biochem Biophy Res Commun 273:609–613

    Article  CAS  Google Scholar 

  17. Favus MJ, Christakos S, Kaplan FS, Shane E, Robey PG, Khosla S, Shoback DM, Kleerekoper M, Goldring SR, Langman CB, Stewart AF, Holick MF, Lian JB, Whyte MP (1999) Primer on the metabolic bone diseases and disorders of mineral metabolism, 4th edn. Lippincott Williams and Wilkins, Philadelphia

  18. Reddi AH (1997) Actions in flesh and bone. Nat Med 3:837–839

    Article  PubMed  CAS  Google Scholar 

  19. Canalis E, Delany A (2002) Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci 966:73–81

    Article  PubMed  CAS  Google Scholar 

  20. Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700

    Google Scholar 

  21. Matsuda N, Morita N, Matsuda K, Watanabe M (1998) Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun 249:350–354

    Article  PubMed  CAS  Google Scholar 

  22. Hillam RA, Skerry TM (1995) Inhibition of bone resorption of formation by mechanical loading of the modeling ret ulna in vivo. J Bone Miner Res 10:683–689

    Article  PubMed  CAS  Google Scholar 

  23. Gschwendt M, Johannes FJ, Kittstein W, Marks F (1997) Regulation of protein kinase C mu by basic peptides and heparin. Putative role of an acidic domain in the activation of the kinase. J Biol Chem 272:20742–20746

    Article  PubMed  CAS  Google Scholar 

  24. Lint JV, Rykx A, Vantus T, Vandenheede JR (2002) Getting to know protein kinase D. Int J Biochem Cell Biol 34:577–581

    Article  PubMed  Google Scholar 

  25. Van Lint J, Rykx A, Maeda Y, Vantus T, Sturany S, Malhotra V, Vandenheede JR, Seufferlein T (2002) Protein kinase D: an intracellular traffic regulator on the move. Trends Cell Biol 12:193–200

    Article  PubMed  Google Scholar 

  26. Rykx A, De Kimpe L, Mikhalap S, Vantus T, Seufferlein T, Vandenheede JR, Van Lint J (2003) Protein kinase D: a family affair. FEBS Lett 546:81–86

    Article  PubMed  CAS  Google Scholar 

  27. Prestle J, Pfizenmaier K, Brenner J, Johannes FJ (1996) Protein kinase C mu is located at the Golgi compartment. J Cell Biol 134:1401–1410

    Article  PubMed  CAS  Google Scholar 

  28. Jamora C, Yamanouye N, Van Lint J, Laudenslager J, Vandenheede JR, Faulkner DJ, Malhotra V (1999) Gbetagamma-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell 98:59–68

    Article  PubMed  CAS  Google Scholar 

  29. Johannes FJ, Horn J, Link G, Haas E, Siemienski K, Wajant H, Pfizenmaier K (1998) Protein kinase C mu downregulation of tumor-necrosis-factor-induced apoptosis correlates with enhanced expression of nuclear-factor-kappa B-dependent protective genes. Eur J Biochem 257:47–54

    Article  PubMed  CAS  Google Scholar 

  30. Lemonnier J, Ghayor C, Guicheux J, Caverzasio J (2004) Protein kinase C-independent activation of protein kinase D is involved in BMP-2-induced activation of stress mitogen-activated protein kinases JNK and p38 and osteoblastic cell differentiation. J Biol Chem 279:259–264

    Article  PubMed  CAS  Google Scholar 

  31. Higuchi C, Myoui A, Hashimoto N, Kuriyama K, Yoshioka K, Yoshikawa H, Itoh K (2002) Continuous inhibition of MAPK signalling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. J Bone Miner Res 17:1785–1794

    Article  PubMed  CAS  Google Scholar 

  32. Iwasaki M, Nakahara H, Nakase T, Kimura T, Takaoka K, Caplan AI, Ono K (1994) Bone morphogenetic protein 2 stimulates osteogenesis but does not affect chondrogenesis in osteochondrogenic differentiation of periosteum-derived cells. J Bone Miner Res 9:1195–1204

    PubMed  CAS  Google Scholar 

  33. Kusumi T, Nishi T, Tanaka M, Tsuchida S, Kudo H (2001) A murine osteosarcoma cell line with a potential to develop ossification upon transplantation. Jpn J Cancer Res 92:649–658

    PubMed  CAS  Google Scholar 

  34. Marzia M, Sims NA, Voit S, Migliaccio S, Taranta A, Bernardini S, Faraggiana T, Yoneda T, Mundy GR, Boyce BF, Baron R, Teti A (2000) Decreased c-Src expression enhances osteoblast differentiation and bone formation. J Cell Biol 151:311–320

    Article  PubMed  CAS  Google Scholar 

  35. Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  36. Kapur S, Baylink DJ, Lau KHW (2003) Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32:241–251

    Article  PubMed  CAS  Google Scholar 

  37. Akhouayri O, Lafage-Proust MH, Rattner A, Laroche N, Caillot-Augusseau A, Alexandre C, Vico L (1999) Effects of static or dynamic mechanical stresses on osteoblast phenotype expression in three-dimensional contractile collagen gels. J Cell Biochem 76:217–230

    Article  PubMed  CAS  Google Scholar 

  38. Chen NX, Ryder KD, Pavalko FM, Turner CH, Burr DB, Oiu J, Duncan RL (2000) Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol Cell Physiol 278:C989–C997

    PubMed  CAS  Google Scholar 

  39. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblastic lineage. J Cell Biol 127:1755–1766

    Article  PubMed  CAS  Google Scholar 

  40. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–812

    Article  PubMed  CAS  Google Scholar 

  41. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809–812

    Article  PubMed  CAS  Google Scholar 

  42. Celil AB, Campbell PG (2005) BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 280:31353–31359

    Article  PubMed  CAS  Google Scholar 

  43. Morton WM, Ayscough KR, McLaughlin PJ (2000) Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat Cell Biol 2:376–378

    Article  PubMed  CAS  Google Scholar 

  44. Cooper JA (1987) Effects of cytochalacin and phalloidin on actin. J Cell Biol 105:1473–1478

    Article  PubMed  CAS  Google Scholar 

  45. Geng WD, Boskovic G, Fultz ME, Li C, Niles RM, Ohno S, Wright GL (2001) Regulation of expression and activity of four PKC isozyme in confluent and mechanically stimulated UMR-108 osteoblastic cells. J Cell Physiol 189:216–228

    Article  PubMed  CAS  Google Scholar 

  46. Toma CD, Ashkar S, Gray ML, Schaffer JL, Gerstenfeld LC (1997) Signal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts. J Bone Miner Res 12:1626–1636

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Kiyoko Yoshioka for her valuable discussions and her assistance. This study was supported in part by research grants from the Ministry of Health, Labour and Welfare of Japan as well as by research grants from Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikahisa Higuchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

supplemental data (TIFF 2346 kb)

About this article

Cite this article

Higuchi, C., Nakamura, N., Yoshikawa, H. et al. Transient dynamic actin cytoskeletal change stimulates the osteoblastic differentiation. J Bone Miner Metab 27, 158–167 (2009). https://doi.org/10.1007/s00774-009-0037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-009-0037-y

Keywords

Navigation