Skip to main content

Advertisement

Log in

Long-term cycles of hypoxia and normoxia increase the contents of liver mitochondrial DNA in rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The mitochondrion is an important cellular component responsible for regulating energy, oxidative metabolism, and acclimatization to high altitude. This study is aimed at investigating the impact of long-term exposure to hypoxia on the amount of mitochondrial DNA (mtDNA) in rat livers. Male Sprague-Dawley rats were randomized and exposed to normoxia (group I), or 5,000 m (barometric pressure about 405.35 mmHg) above the sea level (a hypoxic condition) for 23 and 1 h normoxia daily for five consecutive days (group II), 15 days (group III), and 30 days (group IV), respectively. The levels of plasma malondialdehyde (MDA), homocysteine (Hcy), superoxide dismutase (SOD), and alanine aminotransferase (ALT), the contents of liver mtDNA, mitochondrial transcription factor A (mtTFA), cytochrome oxidase 1 (COX1), COX2, and COX3 mRNA transcripts, and mitochondrial respiratory activity were examined immediately after the last cycle. In comparison with that in control rats, 5–15 cycles of hypoxia/normoxia significantly increased the levels of plasma MDA and ALT, but reduced the levels of Hcy and SOD, accompanied by impairing liver respiratory function in rats. Long-term (30) cycles of hypoxia/normoxia reduced the levels of plasma MDA and ALT, but increased the levels of SOD and Hcy, accompanied by decreased mtTFA expression and mtDNA amount, improved mitochondrial respiratory function in rat liver, when compared that of 5–15 cycles of hypoxia/normoxia. Our data indicate that long-term cycles of hypoxia/normoxia increases the amount of mtDNA and up-regulates COX expression, contributing to acclimatization to very high altitude in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barazzoni R, Short KR, Nair KS (2000) Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem 275:3343–3347

    Article  PubMed  CAS  Google Scholar 

  • Burke PV, Raitt DC, Allen LA, Kellogg EA, Poyton RO (1997) Effects of oxygen concentration on the expression of cytochrome c and cytochrome c oxidase genes in yeast. J Biol Chem 272:14705–14712

    Article  PubMed  CAS  Google Scholar 

  • Cardoso CM, Moreno AJ, Almeida LM, Custodio JB (2003) Comparison of the changes in adenine nucleotides of rat liver mitochondria induced by tamoxifen and 4-hydroxytamoxifen. Toxicol In Vitro 17:663–670

    Article  PubMed  CAS  Google Scholar 

  • Chavez JC, Pichiule P, Boero J, Arregui A (1995) Reduced mitochondrial respiration in mouse cerebral cortex during chronic hypoxia. Neurosci Lett 193:169–172

    Article  PubMed  CAS  Google Scholar 

  • Costa LE, Boveris A, Koch OR, Taquini AC (1988) Liver and heart mitochondria in rats submitted to chronic hypobaric hypoxia. Am J Physiol 255:C123–C129

    PubMed  CAS  Google Scholar 

  • Dapp C, Gassmann M, Hoppeler H, Fluck M (2006) Hypoxia-induced gene activity in disused oxidative muscle. Adv Exp Med Biol 588:171–188

    Article  PubMed  Google Scholar 

  • Duggan AT, Kocha KM, Monk CT, Bremer K, Moyes CD (2011) Coordination of cytochrome c oxidase gene expression in the remodelling of skeletal muscle. J Exp Biol 214:1880–1887

    Article  PubMed  CAS  Google Scholar 

  • El-Sokkary GH, Khidr BM, Younes HA (2006) Role of melatonin in reducing hypoxia-induced oxidative stress and morphological changes in the liver of male mice. Eur J Pharmacol 540:107–114

    Article  PubMed  CAS  Google Scholar 

  • Gennis R, Ferguson-Miller S (1995) Structure of cytochrome c oxidase, energy generator of aerobic life. Science 269:1063–1064

    Article  PubMed  CAS  Google Scholar 

  • Gutsaeva DR, Carraway MS, Suliman HB, Demchenko IT, Shitara H, Yonekawa H, Piantadosi CA (2008) Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. J Neurosci 28:2015–2024

    Article  PubMed  CAS  Google Scholar 

  • Heidler J, Al-Furoukh N, Kukat C, Salwig I, Ingelmann ME, Seibel P, Kruger M, Holtz J, Wittig I, Braun T, Szibor M (2011) Nitric oxide-associated protein 1 (NOA1) is necessary for oxygen-dependent regulation of mitochondrial respiratory complexes. J Biol Chem 286:32086–32093

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW, Stanley C, Merkt J, Sumar-Kalinowski J (1983) Metabolic meaning of elevated levels of oxidative enzymes in high altitude adapted animals: an interpretive hypothesis. Respir Physiol 52:303–313

    Article  PubMed  CAS  Google Scholar 

  • Hoppeler H, Vogt M (2001) Muscle tissue adaptations to hypoxia. J Exp Biol 204:3133–3139

    PubMed  CAS  Google Scholar 

  • Hoppeler H, Vogt M, Weibel ER, Fluck M (2003) Response of skeletal muscle mitochondria to hypoxia. Exp Physiol 88:109–119

    Article  PubMed  CAS  Google Scholar 

  • Huttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, Varughese A, Lu G, Liu J, Ramzan R, Vogt S, Grossman LI, Doan JW, Marcus K, Lee I (2011) Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta 1817:598–609

    PubMed  Google Scholar 

  • Kang D, Kim SH, Hamasaki N (2007) Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion 7:39–44

    Article  PubMed  CAS  Google Scholar 

  • Kim MM, Clinger JD, Masayesva BG, Ha PK, Zahurak ML, Westra WH, Califano JA (2004) Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions. Clin Cancer Res 10:8512–8515

    Article  PubMed  CAS  Google Scholar 

  • Kon M, Ikeda T, Homma T, Suzuki Y (2012) Effects of low-intensity resistance exercise under acute systemic hypoxia on hormonal responses. J Strength Cond Res 26:611–617

    PubMed  Google Scholar 

  • Lee HC, Li SH, Lin JC, Wu CC, Yeh DC, Wei YH (2004) Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat Res 547:71–78

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Gao W, Gao Y, Tang S, Huang Q, Tan X, Chen J, Huang T (2008) Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaptation. Mitochondrion 8:352–357

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Liao W, Chen Y, Cui J, Liu F, Jiang C, Gao W, Gao Y (2011) Altitude can alter the mtDNA copy number and nDNA integrity in sperm. J Assist Reprod Genet 28:951–956

    Article  PubMed  Google Scholar 

  • Magalhaes J, Ascensao A, Soares JM, Ferreira R, Neuparth MJ, Marques F, Duarte JA (2005) Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle. J Appl Physiol 99:1247–1253

    Article  PubMed  CAS  Google Scholar 

  • Maiti P, Singh SB, Ilavazhagan G (2010) Nitric oxide system is involved in hypobaric hypoxia-induced oxidative stress in rat brain. Acta Histochem 112:222–232

    Article  PubMed  CAS  Google Scholar 

  • Martin D, Windsor J (2008) From mountain to bedside: understanding the clinical relevance of human acclimatisation to high-altitude hypoxia. Postgrad Med J 84:622–627; quiz 626

    Article  PubMed  CAS  Google Scholar 

  • Martin R, Fitzl G, Mozet C, Martin H, Welt K, Wieland E (2002) Effect of age and hypoxia/reoxygenation on mRNA expression of antioxidative enzymes in rat liver and kidneys. Exp Gerontol 37:1481–1487

    Article  PubMed  CAS  Google Scholar 

  • May-Panloup P, Vignon X, Chretien MF, Heyman Y, Tamassia M, Malthiery Y, Reynier P (2005) Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod Biol Endocrinol 3:65

    Article  PubMed  Google Scholar 

  • McColm JR, Geisen P, Hartnett ME (2004) VEGF isoforms and their expression after a single episode of hypoxia or repeated fluctuations between hyperoxia and hypoxia: relevance to clinical ROP. Mol Vis 10:512–520

    PubMed  CAS  Google Scholar 

  • Menendez R, Amor AM, Gonzalez RM, Jimenez S, Mas R (2000) Inhibition of rat microsomal lipid peroxidation by the oral administration of D002. Braz J Med Biol Res 33:85–90

    Article  PubMed  CAS  Google Scholar 

  • Miranda S, Foncea R, Guerrero J, Leighton F (1999) Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res Commun 258:44–49

    Article  PubMed  CAS  Google Scholar 

  • Miyahara M, Okimasu E, Mikasa H, Terada S, Kodama H, Utsumi K (1984) Improvement of the anoxia-induced mitochondrial dysfunction by membrane modulation. Arch Biochem Biophys 233:139–150

    Article  PubMed  CAS  Google Scholar 

  • Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. Genome Med 1:117

    Article  PubMed  Google Scholar 

  • Nordsborg NB, Siebenmann C, Jacobs RA, Rasmussen P, Diaz V, Robach P, Lundby C (2012) Four weeks of normobaric “High–Train Low” does not alter muscular or systemic capacity for maintaining pH and K+ homeostasis during intense exercise. J Appl Physiol [Epub ahead of print]

  • Patel SP, Gamboa JL, McMullen CA, Rabchevsky A, Andrade FH (2009) Lower respiratory capacity in extraocular muscle mitochondria: evidence for intrinsic differences in mitochondrial composition and function. Invest Ophthalmol Vis Sci 50:180–186

    Article  PubMed  Google Scholar 

  • Reyes A, Mezzina M, Gadaleta G (2002) Human mitochondrial transcription factor A (mtTFA): gene structure and characterization of related pseudogenes. Gene 291:223–232

    Article  PubMed  CAS  Google Scholar 

  • Robach P, Cairo G, Gelfi C, Bernuzzi F, Pilegaard H, Vigano A, Santambrogio P, Cerretelli P, Calbet JA, Moutereau S, Lundby C (2007) Strong iron demand during hypoxia-induced erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle. Blood 109:4724–4731

    Article  PubMed  CAS  Google Scholar 

  • Roels B, Bentley DJ, Coste O, Mercier J, Millet GP (2007) Effects of intermittent hypoxic training on cycling performance in well-trained athletes. Eur J Appl Physiol 101:359–368

    Article  PubMed  Google Scholar 

  • Salganik RI, Dudareva NA, Kiseleva EV (1991) Structural organization and transcription of plant mitochondrial and chloroplast genomes. Electron Microsc Rev 4:221–247

    Article  PubMed  CAS  Google Scholar 

  • Sauleda J, Garcia-Palmer F, Wiesner RJ, Tarraga S, Harting I, Tomas P, Gomez C, Saus C, Palou A, Agusti AG (1998) Cytochrome oxidase activity and mitochondrial gene expression in skeletal muscle of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157:1413–1417

    PubMed  CAS  Google Scholar 

  • Schild L, Blair PV, Davis WI, Baugh S (1999) Effect of adenine nucleotide pool size in mitochondria on intramitochondrial ATP levels. Biochim Biophys Acta 1413:14–20

    Article  PubMed  CAS  Google Scholar 

  • Schofield CJ, Ratcliffe PJ (2005) Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun 338:617–626

    Article  PubMed  CAS  Google Scholar 

  • Smith L (1955) Spectrophotometric assay of cytochrome c oxidase. Methods Biochem Anal 2:427–434

    Article  PubMed  CAS  Google Scholar 

  • Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 1797:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Song GJ, Lewis V (2008) Mitochondrial DNA integrity and copy number in sperm from infertile men. Fertil Steril 90:2238–2244

    Article  PubMed  CAS  Google Scholar 

  • Valdivia E (1958) Total capillary bed in striated muscles of guinea pigs native to the Peruvian mountains. Am J Physiol 194:585–589

    PubMed  CAS  Google Scholar 

  • Wang Y, Liu VW, Xue WC, Tsang PC, Cheung AN, Ngan HY (2005) The increase of mitochondrial DNA content in endometrial adenocarcinoma cells: a quantitative study using laser-captured microdissected tissues. Gynecol Oncol 98:104–110

    Article  PubMed  CAS  Google Scholar 

  • Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I (2000) Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci USA 97:2826–2831

    Article  PubMed  CAS  Google Scholar 

  • Westerterp KR, Kayser B (2006) Body mass regulation at altitude. Eur J Gastroenterol Hepatol 18:1–3

    Article  PubMed  Google Scholar 

  • Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the 973 Project of China (No.2012CB518200), the National Key Technology R & D Program of China (No.2009BAI85B01).

Conflict of interest

All of the authors stated no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqi Gao.

Additional information

Communicated by Guido Ferretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Lu, G., Chen, Y. et al. Long-term cycles of hypoxia and normoxia increase the contents of liver mitochondrial DNA in rats. Eur J Appl Physiol 113, 223–232 (2013). https://doi.org/10.1007/s00421-012-2414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2414-9

Keywords

Navigation