Skip to main content
Log in

Living at high altitude in combination with sea-level sprint training increases hematological parameters but does not improve performance in rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The regimen of aerobic training at sea level with recovery at high altitude has been used by athletes to improve performance. However, little is known about the effects of hypoxia when combined with sprint interval training on performance. The aim of the present study was to determine the effect of a “living high-sprint training low” strategy on hemoglobin, hematocrit and erythropoietin levels in rats. We also wanted to test whether the addition of a hypoxic stress to the program of daily treadmill running at high speeds induces expressional adaptations in skeletal muscle and affects performance. The protein content of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), cytochrome C, pyruvate dehydrogenase kinase (PDK1), heat shock protein 70 (HSP70), manganese superoxide dismutase (MnSOD) and citrate synthase activity were determined in different muscle fiber types in our animals (red and white gastrocnemius muscle). We also determined the maximal aerobic velocity (MAV) before and after the training period. A total of 24 male Wistar rats (3 month old) were randomly divided into four experimental groups: the normoxic control group (n = 6), the normoxic trained group (n = 6), the hypoxic control group (12 h pO2 12%/12 h pO2 21%) (n = 6) and the hypoxic trained group (12 h pO2 12%/12 h pO2 21%). Living in normobaric hypoxia condition for 21 days significantly increased hemoglobin, hematocrit and erythropoietin levels in both the rest and the trained groups. The trained animals (normoxia and hypoxia) significantly increased their maximal aerobic velocity. No changes were found in the skeletal muscle in PGC-1α, cytochrome C, PDK1, HSP70, MnSOD protein content and in the citrate synthase activity in any experimental group. Regardless of whether it is combined with sprint interval training or not, after 21 days of living at high altitude we found a significant increase in the hematological values determined in our study. However, contrary to our starting hypothesis, the combination of normobaric hypoxia and sprint training did not improve MAV in our animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelmalki A, Fimbel S, Mayet-Sornay MH, Sempore B, Favier R (1996) Aerobic capacity and skeletal muscle properties of normoxic and hypoxic rats in response to training. Pflugers Arch 431:671–679

    Article  PubMed  CAS  Google Scholar 

  • Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451:1008–1012

    Article  PubMed  CAS  Google Scholar 

  • Ashenden MJ, Gore CJ, Dobson GP, Hahn AG (1999) “Live high, train low” does not change the total haemoglobin mass of male endurance athletes sleeping at a simulated altitude of 3,000 m for 23 nights. Eur J Appl Physiol Occup Physiol 80:479–484

    Article  PubMed  CAS  Google Scholar 

  • Ashenden MJ, Gore CJ, Dobson GP, Boston TT, Parisotto R, Emslie KR, Trout GJ, Hahn AG (2000) Simulated moderate altitude elevates serum erythropoietin but does not increase reticulocyte production in well-trained runners. Eur J Appl Physiol 81:428–435

    Article  PubMed  CAS  Google Scholar 

  • Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Faseb J 16:1879–1886

    Article  PubMed  CAS  Google Scholar 

  • Basset FA, Joanisse DR, Boivin F, St-Onge J, Billaut F, Dore J, Chouinard R, Falgairette G, Richard D, Boulay MR (2006) Effects of short-term normobaric hypoxia on haematology, muscle phenotypes and physical performance in highly trained athletes. Exp Physiol 91:391–402

    Article  PubMed  Google Scholar 

  • Brooks GA, White TP (1978) Determination of metabolic and heart rate responses of rats to treadmill exercise. J Appl Physiol 45:1009–1015

    PubMed  CAS  Google Scholar 

  • Buick FJ, Gledhill N, Froese AB, Spriet L, Meyers EC (1980) Effect of induced erythrocythemia on aerobic work capacity. J Appl Physiol 48:636–642

    PubMed  CAS  Google Scholar 

  • Chang SW, Stelzner TJ, Weil JV, Voelkel NF (1989) Hypoxia increases plasma glutathione disulfide in rats. Lung 167:269–276

    Article  PubMed  CAS  Google Scholar 

  • Davies KJ, Packer L, Brooks GA (1981) Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Arch Biochem Biophys 209:539–554

    Article  PubMed  CAS  Google Scholar 

  • Davies KJ, Packer L, Brooks GA (1982a) Exercise bioenergetics following sprint training. Arch Biochem Biophys 215:260–265

    Article  PubMed  CAS  Google Scholar 

  • Davies KJ, Quintanilha AT, Brooks GA, Packer L (1982b) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Dehnert C, Hutler M, Liu Y, Menold E, Netzer C, Schick R, Kubanek B, Lehmann M, Boning D, Steinacker JM (2002) Erythropoiesis and performance after two weeks of living high and training low in well trained triathletes. Int J Sports Med 23:561–566

    Article  PubMed  CAS  Google Scholar 

  • Galbes O, Goret L, Caillaud C, Mercier J, Obert P, Candau R, Py G (2008) Combined effects of hypoxia and endurance training on lipid metabolism in rat skeletal muscle. Acta Physiol (Oxf) 193:163–173

    Article  CAS  Google Scholar 

  • Gomez-Cabrera MC, Pallardo FV, Sastre J, Vina J, Garcia-del-Moral L (2003) Allopurinol and markers of muscle damage among participants in the tour de France. Jama 289:2503–2504

    Article  PubMed  Google Scholar 

  • Gomez-Cabrera MC, Borras C, Pallardo FV, Sastre J, Ji LL, Vina J (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567:113–120

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, Sastre J, Vina J (2008) Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 87:142–149

    PubMed  CAS  Google Scholar 

  • Gore CJ, Hahn A, Rice A, Bourdon P, Lawrence S, Walsh C, Stanef T, Barnes P, Parisotto R, Martin D, Pyne D (1998) Altitude training at 2,690 m does not increase total haemoglobin mass or sea level VO2max in world champion track cyclists. J Sci Med Sport 1:156–170

    Article  PubMed  CAS  Google Scholar 

  • Henderson KK, Clancy RL, Gonzalez NC (2001) Living and training in moderate hypoxia does not improve VO2 max more than living and training in normoxia. J Appl Physiol 90:2057–2062

    Article  PubMed  CAS  Google Scholar 

  • Hilty MR, Groth H, Moore RL, Musch TI (1989) Determinants of VO2max in rats after high-intensity sprint training. J Appl Physiol 66:195–201

    PubMed  CAS  Google Scholar 

  • Hood DA (2001) Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90:1137–1157

    PubMed  CAS  Google Scholar 

  • Ji LL, Fu R (1992) Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. J Appl Physiol 72:549–554

    PubMed  CAS  Google Scholar 

  • Kennedy SL, Stanley WC, Panchal AR, Mazzeo RS (2001) Alterations in enzymes involved in fat metabolism after acute and chronic altitude exposure. J Appl Physiol 90:17–22

    PubMed  CAS  Google Scholar 

  • Khassaf M, McArdle A, Esanu C, Vasilaki A, McArdle F, Griffiths RD, Brodie DA, Jackson MJ (2003) Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol 549:645–652

    Article  PubMed  CAS  Google Scholar 

  • Laughlin MH, Simpson T, Sexton WL, Brown OR, Smith JK, Korthuis RJ (1990) Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J Appl Physiol 68:2337–2343

    PubMed  CAS  Google Scholar 

  • Levine BD, Stray-Gundersen J (1992) A practical approach to altitude training: where to live and train for optimal performance enhancement. Int J Sports Med 13(Suppl 1):S209–S212

    Article  PubMed  Google Scholar 

  • Levine BD, Stray-Gundersen J (1997) “Living high–training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 83:102–112

    PubMed  CAS  Google Scholar 

  • Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J biol chem 193:265–275

    PubMed  CAS  Google Scholar 

  • MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM (1998) Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 84:2138–2142

    Article  PubMed  CAS  Google Scholar 

  • Maglara AA, Vasilaki A, Jackson MJ, McArdle A (2003) Damage to developing mouse skeletal muscle myotubes in culture: protective effect of heat shock proteins. J Physiol 548:837–846

    Article  PubMed  CAS  Google Scholar 

  • Milne KJ, Noble EG (2002) Exercise-induced elevation of HSP70 is intensity dependent. J Appl Physiol 93:561–568

    PubMed  CAS  Google Scholar 

  • Noble EG, Ho R, Dzialoszynski T (2006) Exercise is the primary factor associated with Hsp70 induction in muscle of treadmill running rats. Acta Physiol (Oxf) 187:495–501

    Article  CAS  Google Scholar 

  • Nummela A, Rusko H (2000) Acclimatization to altitude and normoxic training improve 400-m running performance at sea level. J Sports Sci 18:411–419

    Article  PubMed  CAS  Google Scholar 

  • O’Hagan KA, Cocchiglia S, Zhdanov AV, Tambuwala MM, Cummins EP, Monfared M, Agbor TA, Garvey JF, Papkovsky DB, Taylor CT, Allan BB (2009) PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci USA 106:2188–2193

    Article  PubMed  Google Scholar 

  • Ogura Y, Naito H, Aoki J, Uchimaru J, Sugiura T, Katamoto S (2005) Sprint-interval training-induced alterations of myosin heavy chain isoforms and enzyme activities in rat diaphragm: effect of normobaric hypoxia. Jpn J Physiol 55:309–316

    Article  PubMed  CAS  Google Scholar 

  • Ogura Y, Naito H, Kurosaka M, Sugiura T, Aoki J, Katamoto S (2006) Sprint-interval training induces heat shock protein 72 in rat skeletal muscles. J Sports Sci Med 5:194–201

    Google Scholar 

  • Pastoris O, Foppa P, Catapano M, Dossena M (1995) Effects of hypoxia on enzyme activities in skeletal muscle of rats of different ages. An attempt at pharmacological treatment. Pharmacol Res 32:375–381

    Article  PubMed  CAS  Google Scholar 

  • Pialoux V, Mounier R, Rock E, Mazur A, Schmitt L, Richalet JP, Robach P, Brugniaux J, Coudert J, Fellmann N (2009) Effects of the ‘live high–train low’ method on prooxidant/antioxidant balance on elite athletes. Eur J Clin Nutr 63:756–762

    Article  PubMed  CAS  Google Scholar 

  • Pilegaard H, Ordway GA, Saltin B, Neufer PD (2000) Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 279:E806–E814

    PubMed  CAS  Google Scholar 

  • Radak Z, Asano K, Lee KC, Ohno H, Nakamura A, Nakamoto H, Goto S (1997) High altitude training increases reactive carbonyl derivatives but not lipid peroxidation in skeletal muscle of rats. Free Radic Biol Med 22:1109–1114

    Article  PubMed  CAS  Google Scholar 

  • Reboul C, Tanguy S, Juan JM, Dauzat M, Obert P (2005) Cardiac remodeling and functional adaptations consecutive to altitude training in rats: implications for sea level aerobic performance. J Appl Physiol 98:83–92

    Article  PubMed  CAS  Google Scholar 

  • Reichmann H, Hoppeler H, Mathieu-Costello O, von Bergen F, Pette D (1985) Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflugers Arch 404:1–9

    Article  PubMed  CAS  Google Scholar 

  • Robach P, Schmitt L, Brugniaux JV, Nicolet G, Duvallet A, Fouillot JP, Moutereau S, Lasne F, Pialoux V, Olsen NV, Richalet JP (2006) Living high–training low: effect on erythropoiesis and maximal aerobic performance in elite Nordic skiers. Eur J Appl Physiol 97:695–705

    Article  PubMed  Google Scholar 

  • Ross A, Leveritt M (2001) Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med 31:1063–1082

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Vihko V (1983) Endurance training reduces the susceptibility of mouse skeletal muscle to lipid peroxidation in vitro. Acta Physiol Scand 117:109–113

    Article  PubMed  CAS  Google Scholar 

  • Saltin B, Calbet JA (2006) Point: in health and in a normoxic environment, VO2max is limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol 100:744–745

    Article  PubMed  Google Scholar 

  • Sanchis-Gomar F, Martinez-Bello VE, Domenech E, Nascimento AL, Pallardo FV, Gomez-Cabrera MC, Vina J (2009) Effect of intermittent hypoxia on hematological parameters after recombinant human erythropoietin administration. Eur J Appl Physiol 107:429–436

    Article  PubMed  CAS  Google Scholar 

  • Sastre J, Asensi M, Gasco E, Pallardo FV, Ferrero JA, Furukawa T, Vina J (1992a) Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration. Am J Physiol 263:R992–R995

    PubMed  CAS  Google Scholar 

  • Sastre J, Asensi N, Gascó E, Pallardó FV, Ferrero JA, Furukawa T, Viña J (1992b) Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration. Am J Physiol 32:R992–R995

    Google Scholar 

  • Srere PA (1969) Citrate synthase: [EC 4.1.3.7. citrate oxaloacetate-lyase (CoA-acetylating)]. Methods Enzymol 13:3–11

    Article  CAS  Google Scholar 

  • Sugden MC, Holness MJ (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab 284:E855–E862

    PubMed  CAS  Google Scholar 

  • Takekura H, Yoshioka T (1990) Different metabolic responses to exercise training programmes in single rat muscle fibres. J Muscle Res Cell Motil 11:105–113

    Article  PubMed  CAS  Google Scholar 

  • Thomson JM, Stone JA, Ginsburg AD, Hamilton P (1982) O2 transport during exercise following blood reinfusion. J Appl Physiol 53:1213–1219

    PubMed  CAS  Google Scholar 

  • Townsend NE, Gore CJ, Hahn AG, McKenna MJ, Aughey RJ, Clark SA, Kinsman T, Hawley JA, Chow CM (2002) Living high–training low increases hypoxic ventilatory response of well-trained endurance athletes. J Appl Physiol 93:1498–1505

    PubMed  Google Scholar 

  • Viña J, Gomez-Cabrera MC, Lloret A, Marquez R, Minana JB, Pallardo FV, Sastre J (2000) Free radicals in exhaustive physical exercise: mechanism of production, and protection by antioxidants. IUBMB Life 50:271–277

    Article  PubMed  Google Scholar 

  • Wagner PD (1996) Determinants of maximal oxygen transport and utilization. Annu Rev Physiol 58:21–50

    Article  PubMed  CAS  Google Scholar 

  • Warren GL, Cureton KJ (1989) Modeling the effect of alterations in hemoglobin concentration on VO2max. Med Sci Sports Exerc 21:526–531

    PubMed  CAS  Google Scholar 

  • Wehrlin JP, Zuest P, Hallen J, Marti B (2006) Live high–train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol 100:1938–1945

    Article  PubMed  CAS  Google Scholar 

  • Wilber RL, Stray-Gundersen J, Levine BD (2007) Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc 39:1590–1599

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mrs Marilyn Noyes for her kind help in reviewing the manuscript. The authors’ work was supported by grants DPS2008-06968 to J. V. and by grant (ISCIII2006-RED13-027) from the “Red Temática de investigación cooperativa en envejecimiento y fragilidad (RETICEF), Instituto de Salud Carlos III” and COST B35 Action”. Martínez-Bello VE was recipient of a research fellowship from the Research and Scientific Policy Department of the University of Valencia, Spain, and EPICA (Empresa de Productos de Investigación y Ciencias Aplicadas, Spain).

Conflict of interest

None of the authors had any conflicts of interest with the funding agencies or professional relationships with companies or manufacturers who may benefit from the results of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Carmen Gomez-Cabrera.

Additional information

Communicated by Guido Ferretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Bello, V.E., Sanchis-Gomar, F., Nascimento, A.L. et al. Living at high altitude in combination with sea-level sprint training increases hematological parameters but does not improve performance in rats. Eur J Appl Physiol 111, 1147–1156 (2011). https://doi.org/10.1007/s00421-010-1740-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1740-z

Keywords

Navigation