Skip to main content

Advertisement

Log in

Increased distensibility in dependent veins following prolonged bedrest

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Displacement of blood to the lower portion of the body that follows a postural transition from recumbent to erect is augmented by a prolonged period of recumbency (bedrest). Information is scarce as to what extent this augmented blood-volume shift to dependent veins is attributable to increased distensibility of the veins. Accordingly, we studied the effect of 5 weeks of horizontal bedrest on the pressure–distension relationship in limb veins. Elevation of venous distending pressure was induced by exposure of the body except the tested limb to supra-atmospheric pressure with the subject seated in a pressure chamber with one arm, or supine with a lower leg, protruding through a hole in the chamber door. Diameter changes in response to an increase of intravenous pressure (distensibility) from 60 to about 140 mmHg were measured in the brachial and posterior tibial veins using ultrasonographic techniques. Prior to bedrest, the distensibility was substantially less in the tibial than in the brachial vein. Bedrest increased (P < 0.01) pressure distension in the tibial vein by 86% from 7 ± 3% before to 13 ± 3% after bedrest. In the brachial vein, bedrest increased (P < 0.05) pressure distension by 36% from 14 ± 5% before to 19 ± 5% after bedrest. Thus, removal of the gravity-dependent pressure components that act along the blood vessels in erect posture increases the distensibility of dependent veins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arbeille P, Sigaudo D, Pavy Le Traon A, Herault S, Porcher M, Gharib C (1998) Femoral to cerebral arterial blood flow redistribution and femoral vein distension during orthostatic tests after 4 days in the head-down tilt position or confinement. Eur J Appl Physiol Occup Physiol 78:208–218. doi:10.1007/s004210050409

    Article  PubMed  CAS  Google Scholar 

  • Arndt JO, Klement W (1991) Pain evoked by polymodal stimulation of hand veins in humans. J Physiol 440:467–478

    PubMed  CAS  Google Scholar 

  • Ballard RE, Watenpaugh DE, Breit GA, Murthy G, Holley DC, Hargens AR (1998) Leg intramuscular pressures during locomotion in humans. J Appl Physiol 84:1976–1981

    PubMed  CAS  Google Scholar 

  • Beecher HK, Field ME, Krogh A (1936) A method of measuring venous pressure in the human leg during walking. Skand Arch Physiol 73:7

    Google Scholar 

  • Berg HE, Eiken O, Miklavcic L, Mekjavic IB (2007) Hip, thigh and calf muscle atrophy and bone loss after 5-week bed rest inactivity. Eur J Appl Physiol 99:283–289. doi:10.1007/s00421-006-0346-y

    Article  PubMed  Google Scholar 

  • Borg GAV (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    PubMed  CAS  Google Scholar 

  • Buckey JC, Peshock RM, Blomqvist CG (1988) Deep venous contribution to hydrostatic blood volume change in the human leg. Am J Cardiol 62:449–453. doi:10.1016/0002-9149(88)90976-9

    Article  PubMed  CAS  Google Scholar 

  • Connolly DC, Wood EH (1954) Distensibility of peripheral veins in man determined by a miniature-balloon technic. J Appl Physiol 7:239–244

    PubMed  CAS  Google Scholar 

  • Convertino VA, Doerr DF, Stein SL (1989) Changes in size and compliance of the calf after 30 days of simulated microgravity. J Appl Physiol 66:1509–1512

    PubMed  CAS  Google Scholar 

  • Davenport PW, Thompson FJ (1987) Mechanosensitive afferents of femoral-saphenous vein. Am J Physiol 252:R367–R370

    PubMed  CAS  Google Scholar 

  • Eiken O, Kölegård R (2001) Relationship between arm pain and distension of arteries and veins caused by elevation of transmural pressure in local vascular segments. Aviat Space Environ Med 72:427–431

    PubMed  CAS  Google Scholar 

  • Eiken O, Kölegård R (2004) Comparison of vascular distensibility in the upper and lower extremity. Acta Physiol Scand 181:281–287. doi:10.1111/j.1365-201X.2004.01291.x

    Article  PubMed  CAS  Google Scholar 

  • Eiken O, Kölegård R, Mekjavic IB (2008) Pressure–distension relationship in arteries and arterioles in response to five weeks of horizontal bed rest. Am J Physiol Heart Circ Physiol 295:H1296–H1302. doi:10.1152/ajpheart.00576.2008

    Article  PubMed  CAS  Google Scholar 

  • Folkow B (1990) “Structural factor” in primary and secondary hypertension. Hypertension 16:89–101

    PubMed  CAS  Google Scholar 

  • Fortney SM, Schneider VS, Greenleaf JE (1996) The physiology of bed rest. In: Handbook of physiology. Environmental Physiology. Bethesda, MD Am Physiol Soc sect. 4, vol. II, pp 889–939

  • Hainsworth R, Drinkhill MJ (2006) Counterpoint: active venoconstriction is not important in maintaining or raising end-diastolic volume and stroke volume during exercise and orthostasis. J Appl Physiol 101:1264–1265; 1265–1266, 1270

    Google Scholar 

  • Hargens AR, Tipton CM, Gollnick PD, Mubarak SJ, Tucker BJ, Akeson WH (1983) Fluid shifts and muscle function in humans during acute simulated weightlessness. J Appl Physiol 54:1003–1009

    PubMed  CAS  Google Scholar 

  • Jasperse JL, Woodman CR, Price EM, Hasser EM, Laughlin MH (1999) Hindlimb unweighting decreases ecNOS gene expression and endothelium-dependent dilation in rat soleus feed arteries. J Appl Physiol 87:1476–1482

    PubMed  CAS  Google Scholar 

  • Lundin O, Styf JR (1998) Intramuscular pressure in the leg and thigh related to tensile strap force during knee brace wear. An experimental study in man. Am J Sports Med 26:567–570

    PubMed  CAS  Google Scholar 

  • Marshall JM (1991) The venous vessels within skeletal muscle. News Physiol Sci 6:11–15

    CAS  Google Scholar 

  • Mayerson HS, Burch GE (1939) Relationships of tissue (subcutaneous and intramuscular) and venous pressure to syncope induced in man by gravity. Am J Physiol 128:258–265

    Google Scholar 

  • Mekjavic IB, Golja P, Tipton MJ, Eiken O (2005) Human thermoregulatory function during exercise and immersion after 35 days of horizontal bed-rest and recovery. Eur J Appl Physiol 95:163–171. doi:10.1007/s00421-005-1348-x

    Article  PubMed  Google Scholar 

  • Monos E, Lóránt M, Fehér E (2001) Influence of long-term experimental orthostatic body position on innervation density in extremity vessels. Am J Physiol Heart Circ Physiol 281:H1606–H1612

    PubMed  CAS  Google Scholar 

  • Öberg B (1967) The relationship between active constriction and passive recoil of the veins at various distending pressures. Acta Physiol Scand 71:233–247. doi:10.1111/j.1748-1716.1967.tb03729.x

    Article  PubMed  Google Scholar 

  • Pavy-Le Traon A, Sigaudo D, Vasseur P, Maillet A, Fortrat JO, Hughson RL, Gauquelin-Koch G, Gharib C (1998) Cardiovascular responses to orthostatic tests after a 42-day head-down bed-rest. Eur J Appl Physiol Occup Physiol 77:50–59. doi:10.1007/s004210050299

    Article  Google Scholar 

  • Pollack AA, Wood EH (1949) Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture. J Appl Physiol 1:649–662

    PubMed  CAS  Google Scholar 

  • Rothe CF (2006) Point: active venoconstriction is/is not important in maintaining or raising end-diastolic volume and stroke volume during exercise and orthostasis. J Appl Physiol 101:1262–1264; 1265–1266, 1270

    Google Scholar 

  • Thornton WE, Moore TP, Pool SL (1987) Fluid shifts in weightlessness. Aviat Space Environ Med 58:86–90

    Google Scholar 

  • Vaziri ND, Ding Y, Sangha DS, Purdy RE (2000) Upregulation of NOS by simulated microgravity, potential cause of orthostatic intolerance. J Appl Physiol 89:338–344

    PubMed  CAS  Google Scholar 

  • von Kügelgen A (1955) Über das Verhältnis von Ringmuskulatur und Innendruck in Menschlichen grossen Venen. Z Zellforsch Mikrosk Anat 43:168–183. doi:10.1007/BF00320742

    Article  Google Scholar 

  • Watkins SM, Welch L, Whitley P, Forster E (1998) The design of arm pressure covers to alleviate pain in high G maneuvers. Aviat Space Environ Med 69:461–467

    PubMed  CAS  Google Scholar 

  • Wells HS, Youmans JB, Miller DG (1938) Tissue pressure (intracutaneous, subcutaneous and intramuscular) as related to venous pressure, capillary filtration, and other factors. J Clin Invest 17:489–499. doi:10.1172/JCI100976

    Article  PubMed  CAS  Google Scholar 

  • Wood E (1990) Final report “Evolution of anti-G suits and their limitations” DARPA/STO contract no. N66001-87-C-0079

  • Wooley CF, Sparks EH, Boudoulas H (1998) Aortic pain. Prog Cardiovasc Dis 40:563–589. doi:10.1016/S0033-0620(98)80004-2

    Article  PubMed  CAS  Google Scholar 

  • Zhang LF (2001) Vascular adaptation to microgravity: what have we learned? J Appl Physiol 91:2415–2430

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Kölegård.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kölegård, R., Mekjavic, I.B. & Eiken, O. Increased distensibility in dependent veins following prolonged bedrest. Eur J Appl Physiol 106, 547–554 (2009). https://doi.org/10.1007/s00421-009-1044-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1044-3

Keywords

Navigation