Skip to main content
Log in

Active and passive drag: the role of trunk incline

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the role of trunk incline (TI) and projected frontal area (A eff) in determining drag during active/passive measurements. Active drag (D a) was measured in competitive swimmers at speeds from 0.6 to 1.4 m s−1; speed specific drag (D a/v 2) was found to decrease as a function of v (P < 0.001) to indicate that the human body becomes more streamlined with increasing speed. Indeed, both A eff and TI were found to decrease with v (P < 0.001) whereas C d (the drag coefficient) was found to be unaffected by v. These data suggest that speed specific drag depend essentially on A eff. Additional data indicate that A eff is larger during front crawl swimming than during passive towing (0.4 vs. 0.24 m2). This suggest that D a/v 2 is larger than D p/v 2 and, at a given speed, that D a is larger than D p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander DE (1990) Drag coefficients of swimming animals: effects of using different reference areas. Biol Bull 179:186–190. doi:10.2307/1541768

    Article  Google Scholar 

  • Arellano R, Terres-Nicol JM, Redondo JM (2006) Fundamental hydrodynamics of swimming propulsion. Rev Port Cien Desp 6:15–20

    Google Scholar 

  • Chatard JC, Lavoie JM, Burgoin B, Lacour JR (1990a) The contribution of passive drag as a determinant of swimming performance. Int J Sports Med 11:367–372. doi:10.1055/s-2007-1024820

    Article  PubMed  CAS  Google Scholar 

  • Chatard JC, Bourgoin B, Lacour JR (1990b) Passive drag is still a good evaluator of swimming aptitude. Eur J Appl Physiol 59:399–404. doi:10.1007/BF02388619

    Article  CAS  Google Scholar 

  • Clarys JP (1979) Human morphology and hydrodynamics. In: Terauds J, Bedingfield EW (eds) Swimming III. University Park Press, Baltimore, pp 3–41

    Google Scholar 

  • di Prampero PE, Pendergast DR, Wilson D, Rennie DW (1974) Energetics of swimming in man. J Appl Physiol 37:1–5

    PubMed  CAS  Google Scholar 

  • Gourgolis V, Aggeloussis N, Kasimatis P, Vezos N, Boli A, Mavromatis G (2008) Reconstruction accuracy in underwater three-dimensional kinematic analysis. J Sci Med Sport 11:90–95. doi:10.1016/j.jsams.2007.02.010

    Article  Google Scholar 

  • Gronenschild E (1997) The accuracy and reproducibility of a global method to correct for geometric image distortion in the x-ray imaging chain. Med Phys 24(12):1875–1888. doi:10.1118/1.598101

    Article  PubMed  CAS  Google Scholar 

  • Havriluk R (2005) Performance level differences in swimming: a meta-analysis of passive drag forces. Res Q Exerc Sport 76:112–118

    PubMed  Google Scholar 

  • Havriluk R (2007) Variability in measurements of swimming forces: a meta-analysis of passive and active drag. Res Q Exerc Sport 78:32–39

    PubMed  Google Scholar 

  • Kjendlie PL, Stallman RK (2008) Drag characteristics of competitive swimming children and adults. J Appl Biomech 24:35–42

    PubMed  Google Scholar 

  • Kjendlie PL, Stallman RK, Gunderson JS (2004) Passive and active floating torque during swimming. Eur J Appl Physiol 93:75–81. doi:10.1007/s00421-004-1165-7

    Article  PubMed  Google Scholar 

  • Kolmogorov SV, Duplisheva OA (1992) Active drag, useful mechanical power output and hydrodynamic force coefficient in different swimming strokes at maximal velocity. J Biomech 25:311–318. doi:10.1016/0021-9290(92)90028-Y

    Article  PubMed  CAS  Google Scholar 

  • Lavoie JM, Montpetit R (1986) Applied physiology of swimming. Sports Med 165:165–189. doi:10.2165/00007256-198603030-00002

    Article  Google Scholar 

  • Mollendorf JC, Termin AC, Oppenheim E, Pendergast DR (2004) Effect of swim suit design on passive drag. Med Sci Sports Exerc 36:1029–1035. doi:10.1249/01.MSS.0000128179.02306.57

    Article  PubMed  Google Scholar 

  • Pendergast DR, Mollendorf J, Zamparo P, Termin A, Bushnell D, Paschke D (2005) The influence of drag on human locomotion in water. Undersea Hyperb Med 32:45–58

    PubMed  CAS  Google Scholar 

  • Shuter B, Aslani A (2000) Body surface area: Du Bois and Dubois revisited. Eur J Appl Physiol 82:250–254. doi:10.1007/s004210050679

    Article  PubMed  CAS  Google Scholar 

  • Termin B, Pendergast DR (2001) Training using the stroke frequency-velocity relationship to combine biomechanical and metabolic paradigms. J Swim Res 14:9–17

    Google Scholar 

  • Toussaint HM, de Groot G, Savelberg HHCM, Vervoorn K, Hollander AP, n Shenau GJ (1988) Active drag related to velocity in male and female swimmers. J Biomech 5:435–438. doi:10.1016/0021-9290(88)90149-2

    Article  Google Scholar 

  • Vennel R, Pease D, Wilson D (2006) Wave drag in human swimmers. J Biomech 39:664–671. doi:10.1016/j.jbiomech.2005.01.023

    Article  Google Scholar 

  • Vogel S (1994) Life in moving fluids. Princeton University Press, NJ, pp 81–155

  • Vorontsov AR, Rumyantsev VA (2000) Resistive forces in swimming. In: Zatsiorsky VM (ed) Biomechanics in sport: performance enhancement and injury prevention. Blackwell, Oxford, pp 184–204

    Google Scholar 

  • Wilson B, Thorp R (2003) Active drag in swimming. In: Chatard JC (ed) Biomechanics and Medicine in Swimming IX. Publications de l’Université de Saint Etienne, Saint Etienne, pp 15–20

  • Yanai T (2001) Rotational effect of buoyancy in front crawl: does it really cause the legs to sink? J Biomech 34:235–243. doi:10.1016/S0021-9290(00)00186-X

    Article  PubMed  CAS  Google Scholar 

  • Zaidi H, Taiar R, Fohanno S, Polidori G (2008) Analysis of the effect of swimmer’s head position on swimming performance using computational fluid dynamics. J Biomech 41:1350–1358. doi:10.1016/j.jbiomech.2008.02.005

    Article  PubMed  CAS  Google Scholar 

  • Zamparo P (2006) Effects of age and gender on the propelling efficiency of the arm stroke. Eur J Appl Physiol 97:52–58. doi:10.1007/s00421-006-0133-9

    Article  PubMed  Google Scholar 

  • Zamparo P, Pendergast DR, Mollendorf J, Termin B, Minetti AE (2005) An energy balance of front crawl. Eur J Appl Physiol 94:134–144. doi:10.1007/s00421-004-1281-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all the swimmers for their patience and kind cooperation and Dr. Fabio Pizzolato for his help in the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zamparo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamparo, P., Gatta, G., Pendergast, D. et al. Active and passive drag: the role of trunk incline. Eur J Appl Physiol 106, 195–205 (2009). https://doi.org/10.1007/s00421-009-1007-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1007-8

Keywords

Navigation