Skip to main content

Advertisement

Log in

The energy cost of swimming and its determinants

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The energy expended to transport the body over a given distance (C, the energy cost) increases with speed both on land and in water. At any given speed, C is lower on land (e.g., running or cycling) than in water (e.g., swimming or kayaking) and this difference can be easily understood when one considers that energy should be expended (among the others) to overcome resistive forces since these, at any given speed, are far larger in water (hydrodynamic resistance, drag) than on land (aerodynamic resistance). Another reason for the differences in C between water and land locomotion is the lower capability to exert useful forces in water than on land (e.g., a lower propelling efficiency in the former case). These two parameters (drag and efficiency) not only can explain the differences in C between land and water locomotion but can also explain the differences in C within a given form of locomotion (swimming at the surface, which is the topic of this review): e.g., differences between strokes or between swimmers of different age, sex, and technical level. In this review, the determinants of C (drag and efficiency, as well as energy expenditure in its aerobic and anaerobic components) will, thus, be described and discussed. In aquatic locomotion it is difficult to obtain quantitative measures of drag and efficiency and only a comprehensive (biophysical) approach could allow to understand which estimates are “reasonable” and which are not. Examples of these calculations are also reported and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Projected frontal area

AO :

Swimming with arms only

C :

Energy cost

C d :

Drag coefficient

\(\dot{E}\) :

Metabolic power

\(\dot{E}_{{\max} }\) :

Maximal metabolic power

\(\dot{E}_{\text{Aer}}\) :

Metabolic power (aerobic component)

\(\dot{E}_{\text{Anl}}\) :

Metabolic power (anaerobic lactic component)

\(\dot{E}_{\text{AnAl}}\) :

Metabolic power (anaerobic alactic component)

F d :

Hydrodynamic resistance (drag force)

F t :

Thrust force

IVV:

Intra-cyclic variations in speed

IdC:

Index of coordination

LO:

Swimming with legs only

Lab :

Blood lactate concentration

OWS:

Open water swimming

PCr:

Phosphocreatine concentration

SF:

Stroke frequency

SL:

Stroke length

T :

“Leg sinking” torque

t :

Exercise duration

v :

Swimming speed

v max :

Maximal swimming speed

\(\dot{V}{\text{O}}_{2}\) :

Oxygen uptake

\(\dot{V}{\text{O}}_{2{\max} }\) :

Maximal oxygen uptake

\(\dot{W}_{\text{tot}}\) :

Total mechanical power

\(\dot{W}_{\text{ext}}\) :

External mechanical power

\(\dot{W}_{\text{int}}\) :

Internal mechanical power

\(\dot{W}_{\text{d}}\) :

Drag power (mechanical power needed to overcome drag)

\(\dot{W}_{\text{k}}\) :

“Wasted” mechanical power

\(\dot{W}_{\text{t}}\) :

Thrust power (mechanical power needed to propel the body forward)

WS:

Swimming the whole stroke

η O :

Overall efficiency

η P :

Propelling efficiency

η d :

Drag efficiency

η F :

Froude efficiency

η H :

Hydraulic efficiency

ρ :

Water density

τ :

Time constant

3D:

Three-dimensional

References

  • Alexander RMN (1977) Swimming. In: Alexander RMN, Goldspink G (eds) Mechanics and energetics of animal locomotion. Chapman et Hall, London, pp 222–248

    Google Scholar 

  • Alexander RMN (1983) Motion in fluids. Animal mechanics. Blackwell, Oxford, pp 183–233

    Google Scholar 

  • American College of Sport Medicine (2018) Guidelines for exercise testing and prescription, 10th edn. Wolters Kluwer Philadelphia, Philadelphia

    Google Scholar 

  • Baldari C, Fernandes RJ, Meucci M, Ribeiro J, Vilas-Boas JP, Guidetti L (2013) Is the new aquatrainer snorkel valid for VO2 assessment in swimming? Int J Sports Med 34(4):336–344

    CAS  PubMed  Google Scholar 

  • Baldassarre R, Bonifazi M, Zamparo P, Piacentini MF (2017) Characteristics and challenges of open water swimming performance: a review. Int J Sport Physiol Perf 12(10):1275–1284

    Google Scholar 

  • Baldassarre R, Bonifazi M, Piacentini MF (2019) Pacing profile in the main international open water swimming competitions. Eur J Sport Sci 19(4):422–431

    PubMed  Google Scholar 

  • Barbosa T, Keskinen KL, Fernandes R, Colaço P, Lima AB, Vilas-Boas JP (2005) Energy cost and intracyclic variation of the velocity of the centre of mass in butterfly stroke. Eur J Appl Physiol 93:519–523

    PubMed  Google Scholar 

  • Barbosa T, Fernandes RJ, Keskinen KL, Colaço P, Cardoso C, Silva J, Vilas-Boas JP (2006) Evaluation of the energy expenditure in competitive swimming strokes. Int J Sports Med 27:894–899

    CAS  PubMed  Google Scholar 

  • Barbosa T, Keskinen KL, Fernandes RJ, Vilas-Boas JP (2008) The influence of stroke mechanics into energy cost of elite swimmers. Eur J Appl Physiol 103:139–149

    PubMed  Google Scholar 

  • Barbosa TM, Bragada JA, Reis VM, Marinho DA, Carvalho C, Silva AJ (2010) Energetics and biomechanics as determining factors of swimming performance: updating the state of the art. J Sci Med Sport 13:262–269

    PubMed  Google Scholar 

  • Basset DR, Flohr J, Duey WJ, Howley ET, Pein RL (1991) Metabolic responses to drafting during front crawl swimming. Med Sci Sports Exerc 23(6):744–777

    Google Scholar 

  • Beneke R, Pollmann C, Bleif I, Leithauser RM, Hutler M (2002) How anaerobic is the wingate anaerobic test for humans? Eur J Appl Physiol 87:388–392

    CAS  PubMed  Google Scholar 

  • Buglione A, Lazzer S, Colli R, Introini E, di Prampero PE (2011) Energetics of best performances in elite kayakers and canoeists. Med Sci Sports Exerc 43:877–884

    PubMed  Google Scholar 

  • Capelli C (1999) Physiological determinants of best performances in human locomotion. Eur J Appl Physiol 80:298–307

    CAS  Google Scholar 

  • Capelli C, Donatelli C, Moia C, Valier C, Rosa G, di Prampero PE (1990) Energy cost and efficiency of sculling a Venetian gondola. Eur J Appl Physiol 105:635–661

    Google Scholar 

  • Capelli C, Termin B, Pendergast DR (1998) Energetics of swimming at maximal speed in humans. Eur J Appl Physiol 78:385–393

    CAS  Google Scholar 

  • Cavagna GA, Kaneko M (1977) Mechanical work and efficiency in level walking and running. J Physiol 268:467–481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatard JC, Wilson B (2003) Drafting distance in swimming. Med Sci Sports Exerc 35(7):1176–1181

    PubMed  Google Scholar 

  • Chatard JC, Wilson B (2008) Effect of fatskin suits on performance, drag an energy cost of swimming. Med Sci Sports Exerc 40(6):1149–1154

    PubMed  Google Scholar 

  • Chatard JC, Padilla S, Cazorla G, Lacour JR (1985) Influence of body height, weight, hydrostatic lift and training on the energy cost of front crawl. NZ J Sports Med 13:82–84

    Google Scholar 

  • Chatard JC, Lavoie JM, Bourgoin B, Lacour JR (1990a) a) The contribution of passive drag as a determinant of swimming performance. Int J Sports Med 11:367–372

    CAS  PubMed  Google Scholar 

  • Chatard JC, Bourgoin B, Lacour JR (1990b) Passive drag is still a good evaluator of swimming aptitude. Eur J Appl Physiol 59:399–404

    CAS  Google Scholar 

  • Chatard JC, Lavoie JM, Lacour JR (1990c) Analysis of determinants of swimming economy in front crawl. Eur J Appl Physiol 61:88–92

    CAS  Google Scholar 

  • Chatard JC, Lavoie JM, Lacour JR (1991) Energy cost of front crawl swimming in women. Eur J Appl Physiol 63:12–16

    CAS  Google Scholar 

  • Chollet D, Chalies S, Chatard JC (2000) A new index of coordination for the crawl: description and usefulness. Int J Sports Med 21:54–59

    CAS  PubMed  Google Scholar 

  • Clemente-Suarez VJ, Dalamitros A, Riberio J, Sousa A, Fernandes RJ, Vilas-Boas JP (2017) Tracking the performance, energetics and biomechanics of international versus national level swimmers during a competitive season. Eur J Appl Physiol 112:811–820

    Google Scholar 

  • Cortesi M, Fantozzi S, di Michele R, Zamparo P, Gatta G (2014) Passive drag reduction using full-body swimsuits: the role of body position. J Strength Cond Res 28(11):3164–3171

    PubMed  Google Scholar 

  • Cortesi M, Gatta G, Swaine I, Zamparo P, Konstantaki M (2019) Laboratory based ergometry for swimmers: a narrative review. J Sport Med Phys Fitness 59(9):1503–1512

    Google Scholar 

  • Costa MJ, Bragada JA, Mejias JE, Louro H, Marinho DA, Silva AJ, Barbosa TM (2012) Effects of swim training on energetics and performance. Int J Sports Med 34:507–513

    PubMed  Google Scholar 

  • Costill DL, Kovalesky J, Porter D, Kirwanm J, Fielding R, King D (1985) Energy expenditure during front crawl swimming: predicting success in middle distance events. Int J Sport Med 6:266–270

    CAS  Google Scholar 

  • Craig AB Jr, Pendergast DR (1979) Relationships of stroke rate, distance per stroke and velocity in competitive swimming. Med Sci Sports 11:278–283

    PubMed  Google Scholar 

  • Craig AB Jr, Skehan P, Pawelczyk JA, Boomer WL (1985) Velocity, stroke rate and distance per stroke during elite swimming competitions. Med Sci Sports Exerc 17(6):625–634

    PubMed  Google Scholar 

  • Daniel TL (1991) Efficiency in aquatic locomotion: limitations from single cells to animals. In: Blake RW (ed) Efficiency and economy in animal physiology. Cambridge University Press, Cambridge, pp 83–96

    Google Scholar 

  • De Ioannon G, Cibelli G, Mignardi S, Antonelli A, Capranica L, Piacentini MF (2015) Pacing and mood changes while crossing the Adriatic Sea from Italy to Albania: a case study. Int J Sports Physiol Perform 10(4):520–523

    PubMed  Google Scholar 

  • Deschodt VJ, Arsac LM, Rouard AH (1999) Relative contribution of arms and legs in humans to propulsion in 25-m sprint front crawl swimming. Eur J Appl Physiol 80:192–199

    CAS  Google Scholar 

  • di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:143–222

    PubMed  Google Scholar 

  • di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7:55–72

    PubMed  Google Scholar 

  • di Prampero PE (2003) Factors limiting maximal performance in humans. Eur J Appl Physiol 90:420–429

    PubMed  Google Scholar 

  • di Prampero PE, Ferretti G (1999) The energetics of anaerobic muscle metabolism: a reappraisal of old and recent concepts. Resp Physiol 118:103–115

    Google Scholar 

  • di Prampero PE, Davies CT, Cerretelli P, Margaria R (1970) An analysis of O2 debt contracted in submaximal exercise. J Appl Physiol 29(5):547–551

    PubMed  Google Scholar 

  • di Prampero PE, Cortili G, Celentano F, Cerretelli P (1971) Physiological aspects of rowing. J Appl Physiol 31:853–857

    PubMed  Google Scholar 

  • di Prampero PE, Pendergast D, Zamparo P (2011) Swimming economy (energy cost) and efficiency. In: Seifert L, Chollet D, Mujika I (eds) Word book of swimming: from science to performance. Nova Science Publisher, New York, pp 297–312

    Google Scholar 

  • Donato AJ, Tench K, Glueck DH, Seals DR, Eskurza I, Tanaka H (2003) Declines in physiological functional capacity with age: a longitudinal study in peak swimming performance. J Appl Physiol 94:764–769

    PubMed  Google Scholar 

  • Dwyer J (1983) Marathon swimmers: physiologic characteristics. J Sports Med Phys Fitness 23(3):263–272

    CAS  PubMed  Google Scholar 

  • Fernandes RJ, Morais P, Keskinen KL, Seifert L, Chollet D, Vilas-Boas JP (2010) relationship between arm coordination and energy cost in front crawl swimming. In: Kjendlie PL, Stallman RK, Cabri J (eds) Biomechanics and medicine in swimming XI. Norwegian School of Sport Sciences, Oslo, pp 74–76

    Google Scholar 

  • Figueiredo P, Zamparo P, Sousa A, Vilas-Boas JP, Fernandes RJ (2011) An energy balance of the 200 m front crawl race. Eur J Appl Physiol 111:767–777

    PubMed  Google Scholar 

  • Figueiredo P, Barbosa T, Vilas-Boas JP, Fernandes R (2012) Energy cost and body centre of mass’ 3D intracycle velocity variation in swimming. Eur J Appl Physiol 112:3319–3326

    PubMed  Google Scholar 

  • Figueiredo P, Toussaint HM, Vilas-Boas JP, Fernandes RJ (2013) Relation between efficiency and energy cost with coordination in aquatic locomotion. Eur J Appl Physiol 113:651–659

    PubMed  Google Scholar 

  • Formosa D, Mason B, Burkett B (2011) The force-time profile of elite front crawl swimmers. J Sports Sci 29(8):811–819

    PubMed  Google Scholar 

  • Fox RW, McDonald AT (1992) Fluid machines. Introduction to fluid machines. Wiley, New York, pp 544–625

    Google Scholar 

  • Gatta G, Cortesi M, Di Michele R (2012) power production of the lower limbs in flutter kick swimming. Sports Biomech 11(4):480–491

    PubMed  Google Scholar 

  • Gatta G, Cortesi M, Fantozzi S, Zamparo P (2015) Planimetric frontal area in the four swimming strokes: implications for drag, energetics and speed. Human Mov Sci 39:41–54

    Google Scholar 

  • Gatta G, Cortesi M, Swaine I, Zamparo P (2018) Mechanical power, thrust power and propelling efficiency: relationships with elite swimming performance. J Sport Sci 36(5):506–512

    Google Scholar 

  • Gonjo T, McCabe C, Sousa A, Ribeiro J, Fernandes RJ, Vilas-Boas JP, Sanders R (2018) Differences in kinematics and energy cost between front crawl and backstroke below the anaerobic threshold. Eur J Appl Physiol 118(6):1107–1118

    PubMed  Google Scholar 

  • Gourgoulis V, Aggelousis N, Vezos N, Mavromatis G (2006) Effect of two different sized hand paddles on front crawl stroke kinematics. J Sports Med Phys Fitness 46:232–237

    CAS  PubMed  Google Scholar 

  • Gourgoulis V, Boli A, Aggeloussis N, Toubekis A, Antoniu P, Kasimatis P, Vezos N, Michalopulou M, Kambas A, Mavromatis G (2014) The effects of leg kick on sprint front crawl swimming. J Sport Sci 32(3):278–289

    Google Scholar 

  • Greidanus A, Delfos R, Westerwell J (2012) Rowing faster by surface treatment. Procedia Eng 34:361–366

    Google Scholar 

  • Havriluk R (2005) Performance level differences in swimming: a meta-analysis of passive drag forces. Res Q Exerc Sport 76:112–118

    PubMed  Google Scholar 

  • Havriluk R (2007) Variability in measurements of swimming forces: a meta-analysis of passive and active drag. Res Q Exerc Sport 78:32–39

    PubMed  Google Scholar 

  • Holmer I (1972) Oxygen uptake during swimming in man. J Appl Physiol 33:502–509

    CAS  PubMed  Google Scholar 

  • Holmer I (1974) Energy cost of arm stroke, leg kick and the whole stroke in competitive swimming styles. Eur J Appl Physiol 33:105–118

    CAS  Google Scholar 

  • Janssen M, Wilson BD, Toussaint HM (2009) Effects of drafting on hydrodynamic and metabolic responses in front crawl swimming. Med Sci Sports Exerc 41(4):837–843

    PubMed  Google Scholar 

  • Kautz SA, Neptune RR (2002) Biomechanical determinants of pedalling energetics: internal and external work are not independent. Exerc Sport Sci Rev 30:159–165

    PubMed  Google Scholar 

  • Keskinen KL, Rodriguez FA, Keskinen OP (2003) Respiratory snorkel and valve system for breath-by-breath gas analysis in swimming. Scand J Med Sci Sports 13:322–329

    PubMed  Google Scholar 

  • Kjendlie PL, Stallman RK (2008) Drag characteristics of competitive swimming children and adults. J Appl Biomech 24:35–42

    PubMed  Google Scholar 

  • Kjendlie PL, Stallman RK (2011) Morphology and swimming performance. In: Seifert L, Chollet D, Mujika I (eds) World book of swimming: from science to performance, pp 203–221

  • Kjendlie PL, Ingjer F, Stallman RK, Stray-Gundersen J (2004a) Factors affecting swimming economy in children and adults. Eur J Appl Physiol 93:65–74

    PubMed  Google Scholar 

  • Kjendlie PL, Ingjer F, Madsen O, Stallman RK, Stray-Gundersen J (2004b) Differences in the energy cost between children and adults during front crawl swimming. Eur J Appl Physiol 91:473–480

    PubMed  Google Scholar 

  • Knechtle B, Rosemann T, Lepers R, Rust CA (2014) Women outperform men in ultradistance swimming: the Manhattan Island Marathon Swim from 1983 to 2013. Int J Sport Physiol Perf 9:913–924

    Google Scholar 

  • Komar J, Lepretre PM, Alberty M, Vantorre J, Fernandes RJ, Hellard P, Chollet D, Seifert L (2012) Effect of increasing energy cost on arm coordination in elite sprint swimmers. Hum Mov Sci 31:620–629

    CAS  PubMed  Google Scholar 

  • Lauer J, Olstad BH, Minetti AE, Kjendlie PL, Rouard AH (2015) Breastroke swimmers moderate internal work increases toward the highest stroke frequencies. J Biomech 48(12):3012–3016

    PubMed  Google Scholar 

  • Lyttle A, Blanksby B (2011) A review of swimming dive starting and turning performance. In: Seifert L, Chollet D, Mujika I (eds) Word book of swimming: from science to performance. Nova Science Publishers, Hauppauge, pp 425–442

    Google Scholar 

  • Lyttle AD, Blanksby BA, Elliott BC, Lloyd DG (2000) Net force during tethered simulation of underwater streamlined gliding and kicking techniques of freestyle turn. J Sport Sci 18(10):801–807

    CAS  Google Scholar 

  • Medbø J, Mohn AC, Tabata I, Bahr R, Vaage O, Sejersted O (1988) Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol 64:50–60

    PubMed  Google Scholar 

  • Mejias JE, Bragada JA, Costa MJ, Reis VM, Garrido ND, Barbosa TM (2014) “Young” masters vs. elite swimmers: comparison of performance, energetics, kinematics and efficiency. Int Sport Med J 15(2):165–177

    Google Scholar 

  • Minetti AE (2004) Passive tools for enhancing muscle-driven motion and locomotion. J Exp Biol 207:1265–1272

    PubMed  Google Scholar 

  • Minetti AE, Capelli C, Zamparo P, di Prampero PE, Saibene F (1995) Effects of stride frequency on mechanical power and energy expenditure of walking. Med Sci Sports Exer 27(8):1194–1202

    CAS  Google Scholar 

  • Minetti AE, Machtsiras G, Masters J (2009) The optimum finger spacing in human swimming. J Biomech 42:2188–2190

    PubMed  Google Scholar 

  • Mollendorf JC, Termin A, Oppenheim E, Pendergast DR (2004) Effect of swim suit design on passive drag. Med Sci Sports Exerc 36:1029–1035

    PubMed  Google Scholar 

  • Montpetit R, Leger L, Lavoie JM, Cazorla GA (1981) VO2 peak during free swimming using the backward extrapolation of the recovery curve. Eur J Appl Physiol 47:385–391

    CAS  Google Scholar 

  • Moreira M, Morais JE, Marhino DA, Silva AJ, Babosa TM, Costa MJ (2014) Growth influences biomechanical profile of talented swimmers during the summer break. Sport Biomech 13(1):62–74

    Google Scholar 

  • Morris KS, Osborne MA, Shephard ME, Skinner TL, Jenkins DG (2016) Velocity, aerobic power and metabolic cost of whole body and arms only front crawl swimming at various stroke rates. Eur J Appl Physiol 116(5):1075–1085

    CAS  PubMed  Google Scholar 

  • Morris KS, Osborne MA, Shephard ME, Jenkins DG, Skinner TL (2017) Velocity, oxygen uptake and metabolic cost of pull, kick and whole body swimming. Int J Sport Physiol Perf 12:1046–1051

    Google Scholar 

  • Mujika I, Padilla S (2000) Detraining: loss of training-induced physiological and performance adaptations. Part I. Sport Med 30(2):79–87

    CAS  Google Scholar 

  • Narita K, Nakashima M, Takagi H (2017) Developing a methodology for estimating the drag in front crawl swimming at various velocities. J Biomech 54:123–128

    PubMed  Google Scholar 

  • Ogita F, Tabata I (1993) Effect of hand paddle aids on oxygen uptake during arm–stroke–only swimming. Eur J Appl Physiol 66(6):489–493

    CAS  Google Scholar 

  • Ogita F, Hara M, Tabata I (1996) Anaerobic capacity and maximal oxygen uptake during arm stroke, leg kicking and whole body swimming. Acta Physiol Scand 157:435–441

    CAS  PubMed  Google Scholar 

  • Ogita F, Onodera T, Tabata I (1999) Effect of hand paddles on anaerobic energy release during supramaximal swimming. Med Sci Sports Exerc 31(5):729–735

    CAS  PubMed  Google Scholar 

  • Ogita F, Onodera T, Tamaki H, Toussaint H, Hollander P (2003) Wakayoshi K (2003) Metabolic profile during exhaustive arm stroke, leg kick and whole body swimming lasting 15 s to 10 min. In: Chatard J-C (ed) Biomechanics and medicine in swimming IX. Publications de l’ Universite de Saint-Etienne, Saint-Etienne, pp 361–366

    Google Scholar 

  • Payton CJ, Sanders RH (2011) Body-roll in front crawl swimming. In: Seifert L, Chollet D, Mujika I (eds) Word book of Swimming: from science to performance. Nova Science Publishers, Hauppauge, pp 173–190

    Google Scholar 

  • Pendergast DR, di Prampero PE, Craig AB Jr, Wilson DR, Rennie DW (1977) Quantitative analysis of the front crawl in men and women. J Appl Physiol 43:475–479

    CAS  PubMed  Google Scholar 

  • Pendergast DR, Bushnell D, Wilson DR, Cerretelli P (1989) Energetics of kayaking. Eur J Appl Physiol 59:342–350

    CAS  Google Scholar 

  • Pendergast DR, Zamparo P, di Prampero PE, Capelli C, Cerretelli P, Termin A, Craig A, Bushnell D, Paschke D, Mollendorf J (2003) Energy balance of human locomotion in water. Eur J Appl Physiol 90:377–386

    CAS  PubMed  Google Scholar 

  • Pendergast DR, Mollendorf J, Zamparo P, Termin A, Bushnell D, Paschke D (2005) The influence of drag on human locomotion in water. Undersea Hyperb Med 32:45–57

    CAS  PubMed  Google Scholar 

  • Peronnet F, Thibault G (1989) Mathematical analysis of running performance and word running records. J Appl Physiol 67:453–465

    CAS  PubMed  Google Scholar 

  • Peterson-Silveira R, de Souza Castro F, Figuereido P, Vilas-Boas JP, Zamparo P (2017) The effects of leg kick on swimming speed and arm-stroke efficiency in the front crawl. Int J Sport Physiol Perform 12(6):728–735

    Google Scholar 

  • Peyrebrune MC, Toubekis AG, Lakomy HKA, Nevill ME (2014) Estimating the energy contribution during single and repeated sprint swimming. Scand J Med Sci Sports 24:369–376

    CAS  PubMed  Google Scholar 

  • Poujade B, Hautier CA, Rouard A (2002) Determinants of the energy cost of front crawl swimming in children. Eur J Appl Physiol 87:1–6

    CAS  PubMed  Google Scholar 

  • Psycharakis SG, Naemi R, Connaboy C, McCabe C, Sanders RH (2010) Three-dymensional analysis of intracycle velocity fluctuations in front crawl swimming. Scand J Med Sci Sports 20(1):128–135

    CAS  PubMed  Google Scholar 

  • Ratel S, Poujade B (2009) Comparative analysis of the energy cost during front crawl swimming in children and adults. Eur J Appl Physiol 105:543–549

    PubMed  Google Scholar 

  • Reis VM, Marinho DA, Policarpo FB, Carneiro AL, Baldari C, Silva AJ (2010) Examining the accumulated oxygen deficit method in front crawl swimming. Int J Sports 31:421–427

    CAS  Google Scholar 

  • Ribeiro J, Figueiredo P, Sousa A, Monteiro J, Pelarigio J, Vilas-Boas JP, Toussaint H, Fernandes RF (2015) VO2 kinetics and metabolic contribution during full and upper body extreme swimming intensities. Eur J Appl Physiol 115:1117–1124

    CAS  PubMed  Google Scholar 

  • Ribeiro J, Figueiredo P, Guidetti L, Alves F, Toussaint H, Vilas-Boas JP, Baldari C, Fernandes RJ (2016) AquaTrainer snorkel does not increase hydrodynamic drag but influences turning time. Int J Sports Med 37(04):324–328

    CAS  PubMed  Google Scholar 

  • Ribeiro J, Figueiredo P, Morais S, Alves F, Toussaint H, Vilas-Boas JP, Fernandes RJ (2017) Biomechanics, energetics and coordination during extreme swimming intensity: effect of performance level. J Sport Sci 35(16):1614–1621

    Google Scholar 

  • Rodríguez FA (2000) Maximal oxygen uptake and cardiorespiratory response to maximal 400-m free swimming, running and cycling tests in competitive swimmers. J Sports Med Phys Fitness 40(2):87–95

    PubMed  Google Scholar 

  • Rodriguez FA, Mader A (2011) Energy systems in swimming. In: Seifert L, Chollet D, Mujika I (eds) Word book of swimming: from science to performance. Nova Science Publisher, New York, pp 225–240

    Google Scholar 

  • Rodriguez L, Veiga S (2018) Effect of the pacing strategies on the open-water 10-km world swimming championships performances. Int J Sport Physiol Perform 13(6):694–700

    Google Scholar 

  • Rossiter HB, Ward SA, Kowalchuk JM, Howe FA, Griffiths FA, Whipp BJ (2002) Dynamic asymmetry of phosphocreatine concentration and O2 uptake between the on- and off-transients of moderate and high-intensity exercise in humans. J Physiol 541:991–1002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandbakk Ø, Solli GS, Holmberg HC (2018) Sex differences in World record performance: the influence of sport discipline and competition duration. Int J Sports Physiol Perform 2:1–7

    Google Scholar 

  • Scurati R, Gatta G, Michielon G, Cortesi M (2019) Techniques and considerations for monitoring swimmer’s passive drag. J Sports Sci 37(19):1168–1180

    PubMed  Google Scholar 

  • Seifert L, Boulesteix L, Chollet D (2004) Effect of gender on the adaptation of arm coordination in front crawl. Int J Sports Med 25:217–223

    CAS  PubMed  Google Scholar 

  • Seifert L, Chollet D, Chatard JC (2007) Kinematic changes during a 100 m front crawl: effects of performance level and gender. Med Sci Sports Exerc 39:1784–1793

    PubMed  Google Scholar 

  • Seifert L, Toussaint H, Alberty M, Schnitzel C, Chollet D (2010a) Arm coordination, power and swim efficiency in national and regional front crawl swimmers. Hum Mov Sci 29:426–439

    CAS  PubMed  Google Scholar 

  • Seifert L, Komar J, Lepretre PM, Lemaitre F, Chavallard F, Alberty M, Houel N, Hausswirth C, Chollet D, Hellard P (2010b) Swim speciality affects energy cost and motor organization. Int J Sports Med 31:624–630

    CAS  PubMed  Google Scholar 

  • Seifert L, Komar J, Crettenand F, Dadashi F, Aminian K, Millet GP (2014a) Inter.limb coordination and energy cost in swimming. J Sci Med Sport 17:439–444

    CAS  PubMed  Google Scholar 

  • Seifert L, Komar J, Crettenand F, Millet G (2014b) Coordination pattern adaptability: energy cost of degenerate behaviors. PLoS One 9(9):e107839. https://doi.org/10.1371/journal.pone.0107839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp RL, Costill DL (1989) Influence of body air removal on physiological responses during breaststroke swimming. Med Sci Sports Exerc 21(5):576–580

    CAS  PubMed  Google Scholar 

  • Smith HK, Montpetit RR, Perrault H (1988) The aerobic demand of backstroke swimming, and its relation to body size, stroke technique, and performance. Eur J Appl Physiol 58(1–2):182–188

    CAS  Google Scholar 

  • Sousa A, Figueiredo P, Zamparo P, Vilas Boas JP, Fernandes RJ (2013) Anaerobic alactic energy assessment in middle distance swimming. Eur J Appl Physiol 113(8):2153–2158

    PubMed  Google Scholar 

  • Sparrow WA, Newell KM (1998) Metabolic energy expenditure and the regulation of movement economy. Psychon Bull Rev 5:173–196

    Google Scholar 

  • Tam E, Rossi H, Moia C, Berardelli C, Rosa G, Capelli C, Ferretti G (2012) Energetics of running in top-level marathon runners from kenya. Eur J Appl Physiol 112(11):3797–3806

    PubMed  Google Scholar 

  • Tanaka H, Seals DR (1997) Age and gender interactions in physiological functional capacity: insight from swimming performance. J Appl Physiol 83:846–851

    Google Scholar 

  • Termin B, Pendergast DR (2000) Training using the stroke frequency-velocity relationship to combine biomechanical and metabolic paradigms. J Swim Res 14:9–17

    Google Scholar 

  • Tor E, Pease DL, Ball KA (2015) How does drag affect the underwater phase of a swimming start. J Appl Biomech 31:8–12

    PubMed  Google Scholar 

  • Toussaint HM, Hollander AP (1994) Energetics of competitive swimming. Implications for training programmes. Sports Med 18(6):384–405

    CAS  PubMed  Google Scholar 

  • Toussaint HM, Knops W, De Groot G, Hollander AP (1990a) The mechanical efficiency of front crawl swimming. Med Sci Sports Exerc 22:409–415

    CAS  PubMed  Google Scholar 

  • Toussaint HM, de Looze M, van Rossem B, Leijdekkers M, Dignum H (1990b) The effect of growth on drag in young swimmers. J Appl Biomech 6:18–28

    Google Scholar 

  • Toussaint HM, Janssen T, Kluft M (1991) Effect of propelling surface size on the mechanics and energetics of front crawl swimming. J Biomec 24:205–211

    CAS  Google Scholar 

  • Toussaint HM, Roos PE, Kolmogorow S (2004) The determinants of drag in front crawl swimming. J Biomech 37:1655–1663

    PubMed  Google Scholar 

  • Toussaint HM, Carol A, Kranenborg H, Truijens MJ (2006) Effect of fatigue on stroking characteristics in arms-only 100 m front crawl race. Med Sci Sports Exerc 38(9):1635–1642

    PubMed  Google Scholar 

  • Tsunokawa T, Mankyu J, Takagi H, Ogita F (2019) The effect of using paddles on hand propulsive forces and Froude efficiency in arm stroke only front crawl swimming at various velocities. Hum Mov Sci 64:378–388

    PubMed  Google Scholar 

  • Van Handle PA, Katz A, Morrow JR, Troup JP, Daniels JT, Bradleym PW (1988) Aerobic economy and competitive performance of US elite swimmers. In: Ungerechts BE, Wilke K, Reischle K (eds) Swimming science V. Human kinetics, Champaign, pp 219–228

    Google Scholar 

  • Van Houwelingen J, Willemsen DHJ, Kunnen RPJ, van Heijst GF, Grift EJ, Breugem WP, Delfos E, Westerweel J, Vlercx HJH, van de Water W (2017) The effect of finger spreading on drag of the hand in human swimming. J Biomech 63:67–73

    PubMed  Google Scholar 

  • VanHeest JL, Mahoney CE, Herr L (2004) Characteristics of elite open- water swimmers. J Strength Cond Res 18(2):302

    PubMed  Google Scholar 

  • Vennell R, Pease D, Wilson B (2006) Wave drag on human swimmers. J Biomech 39:664–671

    PubMed  Google Scholar 

  • Vilas-Boas JP (1996) Speed fluctuations and energy cost of different breaststroke techniques. In: Troup JP, Hollander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA (eds) Biomechanics and medicine in swimming VII. E & FN Spon, London, pp 167–171

    Google Scholar 

  • Vilas-Boas JP, Santos P (1994) Comparison of swimming economy in three breaststroke techniques. In: Miyashita M, Richardson AB (eds) Medicine and science in aquatic sports. Kargel, Basel, pp 48–54

    Google Scholar 

  • Vogel S (1994) Life in moving fluid. Princeton University Press, Princeton, pp 132–155

    Google Scholar 

  • Vogt P, Rüst CA, Rosemann T, Lepers R, Knechtle B (2013) Analysis of 10 km swimming performance of elite male and female open-water swimmers. Springerplus 2:603

    PubMed  PubMed Central  Google Scholar 

  • Wakayoshi K, D’Acquisto LJ, Cappaert JM, Troup JP (1995) Relationship between oxygen uptake, stroke rate and swimming velocity in competitive swimming. Int J Sports Med 16(1):19–23

    CAS  PubMed  Google Scholar 

  • Wilkie DR (1980) Equations describing power input by humans as a function of duration of exercise. In: Cerretelli P, Whipp BJ (eds) Exercise bioenergetics and gas exchange. Elsevier, Amsterdam, pp 75–80

    Google Scholar 

  • Wilson B, Thorp R (2003) Active drag in swimming. In: Chatard JC (ed) Biomechanics and medicine in swimming IX. University Press, Saint Etienne, pp 15–20

    Google Scholar 

  • Yanai T (2001) Rotational effect of buoyancy in front crawl swimming: does it really cause the legs to sink? J Biomech 34:235–243

    CAS  PubMed  Google Scholar 

  • Yanai T, Wilson BD (2008) How does buoyancy influence front crawl performance? Exploring the assumptions. Sports Technol 1(2–3):89–99

    Google Scholar 

  • Zamparo P (2006) Effects of age and gender on the propelling efficiency of the arm stroke. Eur J Appl Physiol 97:52–58

    PubMed  Google Scholar 

  • Zamparo P, Swaine I (2012) Mechanical and propelling efficiency in swimming derived from exercise using a laboratory based whole-body swimming ergometer. J Appl Physiol 113:584–594

    PubMed  Google Scholar 

  • Zamparo P, Antonutto G, Capelli C, Francescato MP, Girardis M, Sangoi R, Soule RG, Pendergast DR (1996) Effects of body size, body density, gender and growth on underwater torque. Scand J Med Sci Sports 6:273–280

    CAS  PubMed  Google Scholar 

  • Zamparo P, Capelli C, Guerrini G (1999) Energetics of kayaking at sub-maximal and maximal speeds. Eur J Appl Physiol 80(6):542–548

    CAS  Google Scholar 

  • Zamparo P, Capelli C, Cautero M, Di Nino A (2000) Energy cost of front crawl swimming at supramaximal speeds and underwater torque in young swimmers. Eur J Appl Physiol 83:487–491

    CAS  PubMed  Google Scholar 

  • Zamparo P, Pendergast D, Termin A, Minetti AE (2002) How fins affect the economy and efficiency of human swimming. J Exp Biol 205:2665–2676

    CAS  PubMed  Google Scholar 

  • Zamparo P, Pendergast DR, Mollendorf J, Termin A, Minetti AE (2005a) An energy balance of front crawl. Eur J Appl Physiol 94:134–144

    CAS  PubMed  Google Scholar 

  • Zamparo P, Bonifazi M, Faina M, Milan A, Sardella F, Schena F, Capelli C (2005b) Energy cost of swimming of elite long distance swimmers. Eur J Appl Physiol 94:697–704

    CAS  PubMed  Google Scholar 

  • Zamparo P, Carignani G, Plaino L, Sgalmuzzo B, Capelli C (2008a) Energetics of locomotion with pedal driven watercrafts. J Sport Sci 26(1):75–81

    Google Scholar 

  • Zamparo P, Lazzer S, Antoniazzi C, Cedolin S, Avon R, Lesa C (2008b) The interplay between propelling efficiency, hydrodynamic position and energy cost of front crawl in 8 to19-year-old swimmers. Eur J Appl Physiol 104:689–699

    CAS  PubMed  Google Scholar 

  • Zamparo P, Gatta G, Capelli C, Pendergast DR (2009) Active and passive drag, the role of trunk incline. Eur J Appl Physiol 106:195–205

    CAS  PubMed  Google Scholar 

  • Zamparo P, Capelli C, Pendergast DR (2011) Energetics of swimming: a historical perspective. Eur J Appl Physiol 111:367–378

    CAS  PubMed  Google Scholar 

  • Zamparo P, Dall’Ora A, Toneatto A, Cortesi M, Gatta G (2012a) The determinants of performance in master swimmers: age related changes in propelling efficiency, hydrodynamic position and energy cost of front crawl. Eur J Appl Physiol 112(12):3949–3957

    CAS  PubMed  Google Scholar 

  • Zamparo P, Gatta G, di Prampero PE (2012b) The determinants of performance in master swimmers: an analysis of master world records. Eur J Appl Physiol 112:3511–3518

    CAS  PubMed  Google Scholar 

  • Zamparo P, Turri E, Peterson Silveria R, Poli A (2014) The interplay between arms-only propelling efficiency, power output and speed in master swimmers. Eur J Appl Physiol 144(6):1259–1268

    Google Scholar 

  • Zamparo P, Baldassarre R, Bonifazi M, Piacentini MF (2019) Open water swimming. In: Datta S, Bagchi D (eds) Extreme and rare sports. CRC Press, Taylor & Francis Group, Boca Raton, pp 11–33

    Google Scholar 

  • Zingg MA, Rüst CA, Rosemann T, Lepers R, Knechtle B (2013) Analysis of swimming performance in FINA World Cup long distance open water races. Extrem Physiol Med 3(1):2. https://doi.org/10.1186/2046-7648-3-2

    Article  Google Scholar 

  • Zocca R, Toubekis A, Freitas L, Silva AF, Azevedo R, Vilas-Boas JP, Pyne DB, De Sousa-Castro F, Fernandes RJ (2017) Effects of detraining in age group swimmers, performance, energetics and kinematics. J Sport Sci 37(13):1490–1498

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PZ conceptualized and wrote the manuscript. MC and GG performed the literature search and critically revised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paola Zamparo.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Communicated by Michael Lindinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamparo, P., Cortesi, M. & Gatta, G. The energy cost of swimming and its determinants. Eur J Appl Physiol 120, 41–66 (2020). https://doi.org/10.1007/s00421-019-04270-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-019-04270-y

Keywords

Navigation