Skip to main content
Log in

Moderate exercise training decreases aortic superoxide production in myocardial infarcted rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) has been associated with increases in reactive oxygen species (ROS). Exercise training (ET) has been shown to exert positive modulations on vascular function and the purpose of the present study was to investigate the effect of moderate ET on the aortic superoxide production index, NAD(P)H oxidase activity, superoxide dismutase activity and vasomotor response in MI rats. Aerobic ET was performed during 11 weeks. Myocardial infarction significantly diminished maximal exercise capacity, and increased vasoconstrictory response to norepinephrine, which was related to the increased activity of NAD(P)H oxidase and basal superoxide production. On the other hand, ET normalized the superoxide production mostly due to decreased NAD(P)H oxidase activity, although a minor SOD effect may also be present. These adaptations were paralleled by normalization in the vasoconstrictory response to norepinephrine. Thus, diminished ROS production seems to be an important mechanism by which ET mediates its beneficial vascular effects in the MI condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams V, Linke A, Kränkel N, Erbs S, Gielen S, Möbius-Winkler S et al (2005) Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation 111:555–562. doi:10.1161/01.CIR.0000154560.88933.7E

    Article  PubMed  CAS  Google Scholar 

  • Bauersachs J, Bouloumié A, Fraccarollo D, Hu K, Busse R, Ertl G (1999) Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression: role of enhanced vascular superoxide production. Circulation 100:292–298

    PubMed  CAS  Google Scholar 

  • Bauersachs J, Fleming I, Fraccarollo D, Busse R, Ertl G (2001) Prevention of endothelial dysfunction in heart failure by vitamin E: attenuation of vascular superoxide anion formation and increase in soluble guanylyl cyclase expression. Cardiovasc Res 51:344–350. doi:10.1016/S0008-6363(01)00319-4

    Article  PubMed  CAS  Google Scholar 

  • Bossaller C, Habib GB, Yamamoto H, Williams C, Wells S, Henry PD (1997) Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5- monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest 79:170–174. doi:10.1172/JCI112779

    Article  Google Scholar 

  • Brandes RP, Walles T, Koddenberg G, Gwinner W, Mügge A (1998) Endothelium-dependent vasodilatation in sprague-dawley rats with postinfarction hypertrophy: lack of endothelial dysfunction in vitro. Basic Res Cardiol 93:463–469. doi:10.1007/s003950050116

    Article  PubMed  CAS  Google Scholar 

  • Darley-Usmar V, Wiseman H, Halliwell B (1995) Nitric oxide and oxygen radicals: a question of balance. FEBS Lett 369:131–135. doi:10.1016/0014-5793(95)00764-Z

    Article  PubMed  CAS  Google Scholar 

  • Delp MD, Laughlin MH (1997) Time course of enhanced endothelium-mediated dilation in aorta of trained rats. Med Sci Sports Exerc 29:1454–1461. doi:10.1097/00005768-199711000-00011

    PubMed  CAS  Google Scholar 

  • Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG (2000) Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest 105:1631–1639. doi:10.1172/JCI9551

    Article  PubMed  CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcoline. Nature 288:373–376. doi:10.1038/288373a0

    Article  PubMed  CAS  Google Scholar 

  • Gava NS, Véras-Silva AS, Negrão CE, Krieger EM (1995) Low-intensity exercise training attenuates cardiac b-adrenergic tone during exercise in spontaneously hypertensive rats. Hypertension 26:1129–1133

    PubMed  CAS  Google Scholar 

  • Graham DA, Rush JW (2004) Exercise training improves aortic endothelium-dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats. J Appl Physiol 96:2088–2096. doi:10.1152/japplphysiol.01252.2003

    Article  PubMed  CAS  Google Scholar 

  • Hambrecht R, Adams V, Erbs S, Linke A, Kränkel N, Shu Y et al (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107:3152–3158. doi:10.1161/01.CIR.0000074229.93804.5C

    Article  PubMed  CAS  Google Scholar 

  • Higashi Y, Sasaki S, Kurisu S, Yoshimizu A, Sasaki N, Matsuura H et al (1999) Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation 100:1194–1202

    PubMed  CAS  Google Scholar 

  • Indik JH, Goldman S, Gaballa MA (2001) Oxidative stress contributes to vascular endothelial dysfunction in heart failure. Am J Physiol 281:H1767–H1770

    CAS  Google Scholar 

  • Indolfi C, Torella D, Coppola C, Curcio A, Rodriguez F, Bilancio A et al (2002) Physical training increases eNOS vascular expression and activity and reduces restenosis after balloon angioplasty or arterial stenting in rats. Circ Res 91:1190–1197. doi:10.1161/01.RES.0000046233.94299.D6

    Article  PubMed  CAS  Google Scholar 

  • Janiszewski M, Souza HP, Liu X, Pedro MA, Zweier JL, Laurindo FR (2002) Overestimation of NADH-driven vascular oxidase activity due to lucigenin artifacts. Free Radic Biol Med 32:446–453. doi:10.1016/S0891-5849(01)00828-0

    Article  PubMed  CAS  Google Scholar 

  • Ji LL (2008) Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free Radic Biol Med 44:142–152. doi:10.1016/j.freeradbiomed.2007.02.031

    Article  PubMed  CAS  Google Scholar 

  • Katusic ZS, Vanhoutte PM (1989) Superoxide anion is an endothelium derived contracting factor. Am J Physiol 257:H33–H37

    PubMed  CAS  Google Scholar 

  • Kojda G, Hambrecht R (2005) Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? Cardiovasc Res 76:187–197. doi:10.1016/j.cardiores.2005.04.032

    Article  Google Scholar 

  • Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43:562–571. doi:10.1016/S0008-6363(99)00169-8

    Article  PubMed  CAS  Google Scholar 

  • Kubo SH, Rector TS, Bank AJ, Williams RE, Heifetz SM (1991) Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation 84:1589–1596

    PubMed  CAS  Google Scholar 

  • Laurindo FR, Pedro Mde A, Barbeiro HV, Pileggi F, Carvalho MH, Augusto O et al (1994) Vascular free radical release. Ex vivo and in vivo evidence for a flow-dependent endothelial mechanism. Circ Res 74:700–709

    PubMed  CAS  Google Scholar 

  • Leeuwenburgh C, Fiebig R, Chandwaney R, Ji LL (1994) Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems. Am J Physiol 267:R439–R445

    PubMed  CAS  Google Scholar 

  • Leite PF, Danilovic A, Moriel P, Dantas K, Marklund S, Dantas AP et al (2003) Sustained decrease in superoxide dismutase activity underlies constrictive remodeling after balloon injury in rabbits. Arterioscler Thromb Vasc Biol 23:2197–2202. doi:10.1161/01.ATV.0000093980.46838.41

    Article  PubMed  CAS  Google Scholar 

  • Munzel T, Harrison DG (1999) Increased superoxide in heart failure. A biochemical baroreflex gone awry. Circulation 100:216–218

    PubMed  CAS  Google Scholar 

  • Ohashi Y, Kawashima S, Hirata K, Yamashita T, Ishida T, Inoue N et al (1998) Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J Clin Invest 102:2061–2071. doi:10.1172/JCI4394

    Article  PubMed  CAS  Google Scholar 

  • Pereira RB, Sartório CL, Vassallo DV, Stefanon I (2005) Differences in tail vascular bed reactivity in rats with and without heart failure following myocardial infarction. J Pharmacol Exp Ther 312:1321–1325. doi:10.1124/jpet.104.077701

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA et al (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44:503–512

    PubMed  CAS  Google Scholar 

  • Pohl U, Busse R (1987) Endothelium-derived relaxant factor inhibits effects of nitrocompounds in isolated arteries. Am J Physiol 252:H307–H313

    PubMed  CAS  Google Scholar 

  • Powers SK, Ji LL, Leeuwenburgh C (1999) Exercise training induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 31:987–997. doi:10.1097/00005768-199907000-00011

    Article  PubMed  CAS  Google Scholar 

  • Ramires PR, Ji LL (2001) Glutathione supplementation and training increases myocardial resistance to ischemia-reperfusion in vivo. Am J Physiol 281:679–688

    Google Scholar 

  • Rush JW, Laughlin MH, Woodman CR, Price EM (2000) SOD-1 expression in pig coronary arterioles is increased by exercise training. Am J Physiol 279:H2068–H2076

    CAS  Google Scholar 

  • Rush JW, Turk JR, Laughlin MH (2003) Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium. Am J Physiol 284:H1378–H1387

    CAS  Google Scholar 

  • Shepherd D, Garland PB (1969) The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 114:597–610

    PubMed  CAS  Google Scholar 

  • Teerlink JR, Gray GA, Clozel M, Clozel JP (1994) Increased vascular responsiveness to norepinephrine in rats with heart failure is endothelium dependent. Circulation 89:393–401

    PubMed  CAS  Google Scholar 

  • Thuillez C, Mulder P, Elfertak L, Blaysat G, Compagnon P, Henry JP et al (1995) Prevention of endothelial dysfunction in small and large arteries in a model of chronic heart failure. Effect of angiotensin converting enzyme inhibition. Am J Hypertens 8:7S–12S. doi:10.1016/0895-7061(95)00027-M

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Kawashima S, Ohashi Y, Ozaki M, Rikitake Y, Inoue N, Hirata K, Akita H, Yokoyama M (2000) Mechanisms of reduced nitric oxide/cGMP-mediated vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. Hypertension 36:97–102

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the scientific and technical support provided by Dr. Francisco Rafael Martins Laurindo and his research group (Laboratory of Vascular Biology, InCor-HCFMUSP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Rizzo Ramires.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanchi, N.E., Bechara, L.R.G., Tanaka, L.Y. et al. Moderate exercise training decreases aortic superoxide production in myocardial infarcted rats. Eur J Appl Physiol 104, 1045–1052 (2008). https://doi.org/10.1007/s00421-008-0861-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0861-0

Keywords

Navigation