Skip to main content
Log in

Loss of neuromuscular control related to motion in the acutely ACL-injured knee: an experimental study

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Ligamentomuscular and muscular stretch reflexes are known to contribute to knee joint stability. After anterior cruciate ligament (ACL) injury, a more intense and adjusted muscular response is required to maintain joint stability, but this neuromuscular control of the knee has not been clearly proved. The aim of the study is to record electromyography (EMG) signal and muscular fibre length variations in quadriceps and hamstrings of the knee with and without ACL, and to analyze and integrate the ligament strain and the muscular reaction to forced anterior tibial translation (ATT). In 17 knees from 12 cats, EMG electrodes and ultrasonomicrometry crystals were inserted into four main periarticular muscles, with strain gauges on periarticular ligament insertions. Their output signal was compared before and after ACL surgical section in series of ATT (at 90° and 30° knee flexion), and also during knee flexion and extension. Linear regression analysis was performed between the EMG signal and muscular fibre length variations, and between the EMG signal and the strain on ligament insertions, in the search of this reflex neuromuscular response. In the ACL deficient knees, the studied muscles showed a poor adjustment to motion of EMG firing, inversely to controls. The muscle stretch reflexes showed poorer correlation with post-peak EMG activity than the ligaments. ATT control depended mainly on hamstrings activity in control knees, whereas in unstable knees, quadriceps activity was associated with more tibial translation. Acute ACL-deficient knees showed poor neuromuscular control with weak ligamentomuscular reflexes and no muscular stretch reflexes, suggesting the ineffectiveness of acute muscular reaction to provide early mechanical knee stabilization after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi N, Ochi M, Uchio Y, Iwasa J, Ryoke K, Kuriwaka M (2002) Mechanoreceptors in the anterior cruciate ligament contribute to the joint position sense. Acta Orthop Scand 73:330–334

    Article  PubMed  Google Scholar 

  • Ageberg E (2002) Consequences of a ligament injury on neuromuscular function and relevance to rehabilitation - using the anterior cruciate ligament-injured knee as model. J Electromyogr Kinesiol 12:205–212

    Article  PubMed  Google Scholar 

  • An K-N (2002) Muscle force and its role in joint dynamic stability. Clin Orthop Relat Res 403S:S37–S42

    Article  Google Scholar 

  • Beynnon B, Johnson R, Fleming B (2002) The science of anterior cruciate ligament rehabilitation. Clin Orthop Relat Res 402:9–20

    Article  PubMed  Google Scholar 

  • Biau DJ, Tournoux C, Katsahian S, Schranz PJ, Nizard RS (2006) Bone-patellar tendon-bone autografts versus hamstring autografts for reconstruction of anterior cruciate ligament: meta-analysis. BMJ 332:995–1001

    Article  PubMed  Google Scholar 

  • Biewener A (2002) Future directions for the analysis of musculoskeletal design and locomotor performance. J Morphol 252:38–51

    Article  PubMed  Google Scholar 

  • Biewener A, Corning W (2001) Dynamics of mallard (Anas platyrhynchos) gastrocnemius function during swimming versus terrestrial locomotion. J Exp Biol 204:1745–1756

    PubMed  CAS  Google Scholar 

  • Bonsfills N, Raygoza JJ, Boemo E, Garrido J, Nunez A, Gomez-Barrena E (2007) Proprioception in the ACL-ruptured knee: the contribution of the medial collateral ligament and patellar ligament. An in vivo experimental study in the cat. Knee 14:39–45

    Article  PubMed  CAS  Google Scholar 

  • Chmielewski TL, Ramsey DK, Snyder-Mackler L (2005) Evidence for differential control of tibial position in perturbed unilateral stance after acute ACL rupture. J Orthop Res 23:54–60

    Article  PubMed  CAS  Google Scholar 

  • Chmielewski TL, Rudolph KS, Snyder-Mackler L (2002) Development of dynamic knee stability after acute ACL injury. J Electromyogr Kinesiol 12:267–274

    Article  PubMed  Google Scholar 

  • Dhaher YY, Tsoumanis AD, Rymer WZ (2003) Reflex muscle contractions can be elicited by valgus positional perturbations of the human knee. J Biomech 36:199–209

    Article  PubMed  CAS  Google Scholar 

  • Dyhre-Poulsen P, Krogsgaard MR (2000) Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol 89:2191–2195

    PubMed  CAS  Google Scholar 

  • Engstrom B, Gornitzka J, Johansson C, Wredmark T (1993) Knee function after anterior cruciate ligament ruptures treated conservatively. Int Orthop 17:208–213

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Rasmussen T, Jensen TO, Kjaer M, Krogsgaard M, Dyhre-Poulsen P, Magnusson SP (2001) Is proprioception altered during loaded knee extension shortly after ACL rupture? Int J Sports Med 22:385–391

    Article  PubMed  CAS  Google Scholar 

  • Freeman MA, Wyke B (1967) The innervation of the knee joint. An anatomical and histological study in the cat. J Anat 101:505–532

    PubMed  CAS  Google Scholar 

  • Gillis G, Biewener A (2001a) Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus). J Exp Biol 204:2717–2731

    PubMed  CAS  Google Scholar 

  • Gillis G, Biewener A (2001b) Plasticity in limb muscle function during rat locomotion. Society for Integrative and Comparative Biology Annual Meeting, Chicago

  • Gómez-Barrena E, Martínez-Moreno E, Munuera L (1996) Segmental sensory innervation of the anterior cruciate ligament and the patellar tendon of the cat’s knee. Acta Orthop Scand 67:545–552

    PubMed  Google Scholar 

  • Gómez-Barrena E, Núñez A, Ballesteros R, Martínez-Moreno E, Munuera L (1999) Anterior cruciate ligament reconstruction affects proprioception in the cat’s knee. Acta Orthop Scand 70:185–193

    PubMed  Google Scholar 

  • Gómez-Barrena E, Núñez A, Martínez-Moreno E, Valls J, Munuera L (1997) Neural and muscular electric activity in the cat’s knee. Acta Orthop Scand 68:149–155

    Article  PubMed  Google Scholar 

  • Grabiner MD, Koh TJ, Miller GF (1992) Further evidence against a direct automatic neuromotor link between the ACL and hamstrings. Med Sci Sports Exerc 24:1075–1079

    PubMed  CAS  Google Scholar 

  • Griffiths R (1987) Ultrasound transit time gives direct measurement of muscle fiber length in vivo. J Neurosci Methods 21:159–165

    Article  PubMed  CAS  Google Scholar 

  • Grood E, Suntay W (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    Article  PubMed  CAS  Google Scholar 

  • Halata Z, Haus J (1989) The ultrastructure of sensory nerve endings in human anterior cruciate ligament. Anat Embryol (Berl) 179:415–421

    Article  CAS  Google Scholar 

  • Herzog W, Archambault J, Leonard T, Nguyen H (1996a) Evaluation of the implantable force transducer for chronic tendon-force recordings. J Biomech 29:103–109

    Article  PubMed  CAS  Google Scholar 

  • Herzog W, Hasler E, Leonard T (1996b) In-situ calibration of the implantable force transducer. J Biomech 29:1649–1652

    PubMed  CAS  Google Scholar 

  • Herzog W, Longino D, Clark A (2003) The role of muscles in joint adaptation and degeneration. Langenbecks Arch Surg 388:305–315

    Article  PubMed  CAS  Google Scholar 

  • Hill R, Kleinman L, Chitwood WJ, Wechsler A (1978) Segmental mid-wall myocardial dimensions in man recorded by sonomicrometry. J Thorac Cardiovasc Surg 76:235–243

    PubMed  CAS  Google Scholar 

  • Hinterwimmer S, Baumgart R, Plitz W (2002) Tension changes in the collateral ligaments of a cruciate ligament-deficient knee joint: an experimental biomechanical study. Arch Orthop Trauma Surg 122:454–458

    PubMed  CAS  Google Scholar 

  • Hogervorst T, Brand RA (1998) Mechanoreceptors in joint function. J Bone Joint Surg Am 80:1365–1378

    PubMed  CAS  Google Scholar 

  • Hogervorst T, Brand RA (2003) Joint mechanoreceptors and knee function. In: Pedowitz R (ed) Daniel’s knee injuries ligament and cartilage structure, function, injury, and repair. Lippincott, Philadelphia, pp 138–143

    Google Scholar 

  • Hoyt D, Wickler S, Biewener A, Cogger E, De la Paz K (2005) In vivo muscle function vs speed. I. Muscle strain in relation to length change of the muscle-tendon unit. J Exp Biol 208:1175–1190

    Article  PubMed  Google Scholar 

  • Jennings A, Seedhom B (1994) Proprioception in the knee and reflex hamstring contraction latency. J Bone Joint Surg 76-B:491–494

    Google Scholar 

  • Johansson H, Sjolander P, Sojka P (1991) A sensory role for the cruciate ligaments. Clin Orthop Relat Res Jul:161–178

    Google Scholar 

  • Krogsgaard MR, Dyhre-Poulsen P, Fischer-Rasmussen T (2002) Cruciate ligament reflexes. J Electromyogr Kinesiol 12:177–182

    Article  PubMed  Google Scholar 

  • Maitland M, Leonard T, Frank C, Shrive N, Herzog W (1998a) Longitudinal measurement of tibial motion relative to the femur during passive displacements in the cat before and after anterior cruciate ligament transection. J Orthop Res 16:448–454

    Article  PubMed  CAS  Google Scholar 

  • Maitland M, Leonard T, Frank C, Shrive N, Herzog W (1998b) Method to assess in vivo knee stability longitudinally in an animal model of ligament injury. J Orthop Res 16:441–447

    Article  PubMed  CAS  Google Scholar 

  • Moritani T, Yoshitake Y (1998) 1998 ISEK congress keynote lecture: the use of electromyography in applied physiology. International Society of Electrophysiology and Kinesiology. J Electromyogr Kinesiol 8:363–381

    Article  PubMed  CAS  Google Scholar 

  • Mutsuzaki H, Sakane M, Ikeda K, Ishii T, Hattori S, Tanaka J, Ochiai N (2007) Histological changes and apoptosis of cartilage layer in human anterior cruciate ligament tibial insertion after rupture. Knee Surg Sports Traumatol Arthrosc 15:602–609

    Article  PubMed  Google Scholar 

  • Nakajima M, Kawamura K, Takeda I (2003) Electromyographic analysis of a modified maneuver for quadriceps femoris muscle setting with co-contraction of the hamstrings. J Orthop Res 21:559–564

    Article  PubMed  Google Scholar 

  • Nichols TR (2002) The contributions of muscles and reflexes to the regulation of joint and limb mechanics. Clin Orthop Relat Res 403S:S43–S50

    Article  Google Scholar 

  • Orlovsky G, Deliagina T, Grillner S (1999) Quadrupedal locomotion in mammals. In: Orlovsky G, Deliagina T, Grillner S (eds) Neuronal control of locomotion from mollusc to man. Oxford University Press, New York

    Google Scholar 

  • Parmiggiani F, Stein RB (1981) Nonlinear summation of contractions in cat muscles. II. Later facilitation and stiffness changes. J Gen Physiol 78:295–311

    Article  PubMed  CAS  Google Scholar 

  • Populin LC (2005) Anesthetics change the excitation/inhibition balance that governs sensory processing in the cat superior colliculus. J Neurosci 25:5903–5914

    Article  PubMed  CAS  Google Scholar 

  • Solomonow M, Baratta R, Zhou E, Shoji H, Bose W, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15:207–213

    Article  PubMed  CAS  Google Scholar 

  • Solomonow M, Krogsgaard M (2001) Sensorimotor control of knee stability. A review. Scand J Med Sci Sports 11:64–80

    Article  PubMed  CAS  Google Scholar 

  • Teixeira da Fonseca S, Silva PL, Ocarino JM, Guimaraes RB, Oliveira MT, Lage CA (2004) Analyses of dynamic co-contraction level in individuals with anterior cruciate ligament injury. J Electromyogr Kinesiol 14:239–247

    Article  PubMed  Google Scholar 

  • Tsepis E, Vagenas G, Giakas G, Georgoulis A (2004) Hamstring weakness as an indicator of poor knee function in ACL-deficient patients. Knee Surg Sports Traumatol Arthrosc 12:22–29

    Article  PubMed  CAS  Google Scholar 

  • Tsuda E, Ishibashi Y, Okamura Y, Toh S (2003) Restoration of anterior cruciate ligament-hamstring reflex arc after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 11:63–67

    PubMed  Google Scholar 

  • Williams G, Barrance P, Snyder-Mackler L, Axe M, Buchanan T (2003) Specificity of mucle action after anterior cruciate ligament injury. J Orthop Res 21:1131–1137

    Article  PubMed  Google Scholar 

  • Wojtys E, Huston L (1994) Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am J Sports Med 22:89–104

    Article  PubMed  CAS  Google Scholar 

  • Zhou BH, Baratta RV, Solomonow M, Olivier LJ 3rd, D’Ambrosia RD (1996) Evaluation of isometric antagonist coactivation strategies of electrically stimulated muscles. IEEE Trans Biomed Eng 43:150–160

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported with a grant by F.I.S. (Fondo de Investigaciones Sanitarias; 01/0371, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bonsfills.

Additional information

No benefits of any kind have been received by the authors for this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonsfills, N., Gómez-Barrena, E., Raygoza, J.J. et al. Loss of neuromuscular control related to motion in the acutely ACL-injured knee: an experimental study. Eur J Appl Physiol 104, 567–577 (2008). https://doi.org/10.1007/s00421-008-0729-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0729-3

Keywords

Navigation