Skip to main content
Log in

Cellular patterns of the atrophic response in murine soleus and gastrocnemius muscles submitted to simulated weightlessness

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of the present study was to investigate the mechanisms of cell death (apoptosis vs. necrosis) during muscle atrophy induced by 1 week of hindlimb suspension. Biochemical and morphological parameters were examined in murine soleus and gastrocnemius muscles. A total of 70 male Charles River CD1 mice were randomly assigned to seven groups (n = 10/group): Cont (loading control conditions) and 6HS, 12HS, 24HS, 48HS, 72HS and 1wkHS with respect to the period of hindlimb suspension (HS). Compared to the Cont, skeletal muscle atrophy was confirmed by a significant decrease of 44 and of 17% in fiber cross-sectional areas in the gastrocnemius and soleus, respectively. A significant increase in caspase-3 activity was noticed in 6HS (196%, P < 0.05) and in 12HS (201%, P < 0.05), as well as the amount of cytosolic mono- and oligonucleosomes at 12HS (142%, P < 0.05) and 24HS (203%, P < 0.05) in the gastrocnemius and soleus, respectively. The profile of necrotic markers showed a peak of myeloperoxidase activity at 24HS (170%, P < 0.05) and at 72HS (114%, P < 0.05) in the gastrocnemius and soleus, respectively. The analysis of N-acetylglucosaminidase activity evidenced more increment in the soleus at 72HS (60%, P < 0.05). The analysis of the basal values of these parameters suggested that apoptosis prevailed in the slow-twitch muscle analyzed, whereas lysosomic activity seemed to be more pronounced in the gastrocnemius. The morphological data supported the biochemical results pointing towards a shift from apoptosis to necrosis, which seems to corroborate the aponecrosis theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhihetty PJ, Hood DA (2003) Mechanisms of apoptosis in skeletal muscle. Basic Appl Myol 13:171–179

    Google Scholar 

  • Allen DL, Linderman JK, Roy RR, Bigbee AJ, Grindeland RE, Mukku V, Edgerton VR (1997) Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol 273:C579–C587

    PubMed  CAS  Google Scholar 

  • Allen DL, Monke SR, Talmadge RJ, Roy RR, Edgerton VR (1995) Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 78:1969–1976

    PubMed  CAS  Google Scholar 

  • Allen DL, Roy RR, Edgerton VR (1999) Myonuclear domains in muscle adaptation and disease. Muscle Nerve 22:1350–1360

    Article  PubMed  CAS  Google Scholar 

  • Allen DL, Yasui W, Tanaka T, Ohira Y, Nagaoka S, Sekiguchi C, Hinds WE, Roy RR, Edgerton VR (1996) Myonuclear number and myosin heavy chain expression in rat soleus single muscle fibers after spaceflight. J Appl Physiol 81:145–151

    PubMed  CAS  Google Scholar 

  • Appell HA, Ascensão A, Natsis K, Michael J, Duarte JA (2004) Signs of necrosis and inflammation do not support the concept of apoptosis as the predominant mechanism during early atrophy in immobilized muscle. Basic Appl Myol 14:191–196

    Google Scholar 

  • Baldwin KM, Herrick RE, Ilyina-Kakueva E, Oganov VS (1990) Effects of zero gravity on myofibril content and isomyosin distribution in rodent skeletal muscle. FASEB J 4:79–83

    PubMed  CAS  Google Scholar 

  • Boonyarom O, Inui K (2006) Atrophy and hypertrophy of skeletal muscles: structural and functional aspects. Acta Physiol (Oxf) 188:77–89

    CAS  Google Scholar 

  • Borisov AB, Carlson BM (2000) Cell death in denervated skeletal muscle is distinct from classical apoptosis. Anat Rec 258:305–318

    Article  PubMed  CAS  Google Scholar 

  • Bozzo C, Stevens L, Bouet V, Montel V, Picquet F, Falempin M, Lacour M, Mounier Y (2004) Hypergravity from conception to adult stage: effects on contractile properties and skeletal muscle phenotype. J Exp Biol 207:2793–2802

    Article  PubMed  Google Scholar 

  • Bozzo C, Stevens L, Toniolo L, Mounier Y, Reggiani C (2003) Increased phosphorylation of myosin light chain associated with slow-to-fast transition in rat soleus. Am J Physiol Cell Physiol 285:C575–583

    PubMed  CAS  Google Scholar 

  • Degens H, Alway SE (2006) Control of muscle size during disuse, disease, and aging. Int J Sports Med 27:94–99

    Article  PubMed  CAS  Google Scholar 

  • Denecker G, Vercammen D, Declercq W, Vandenabeele P (2001) Apoptotic and necrotic cell death induced by death domain receptors. Cell Mol Life Sci 58:356–370

    Article  PubMed  CAS  Google Scholar 

  • Detweiler CD, Deterding LJ, Tomer KB, Chignell CF, Germolec D, Mason RP (2002) Immunological identification of the heart myoglobin radical formed by hydrogen peroxide. Free Radic Biol Med 33:364–369

    Article  PubMed  CAS  Google Scholar 

  • di Prampero PE, Narici MV (2003) Muscles in microgravity: from fibres to human motion. J Biomech 36:403–412

    Article  PubMed  Google Scholar 

  • Dirks AJ, Leeuwenburgh C (2004) Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radic Biol Med 36:27–39

    Article  PubMed  CAS  Google Scholar 

  • Edgerton VR, Roy RR, Allen DL, Monti RJ (2002) Adaptations in skeletal muscle disuse or decreased-use atrophy. Am J Phys Med Rehabil 81:S127–S147

    Article  PubMed  Google Scholar 

  • Edgerton VR, Zhou MY, Ohira Y, Klitgaard H, Jiang B, Bell G, Harris B, Saltin B, Gollnick PD, Roy RR et al (1995) Human fiber size and enzymatic properties after 5 and 11 days of space flight. J Appl Physiol 78:1733–1739

    PubMed  CAS  Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol 89:823–839

    PubMed  CAS  Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204:3201–3208

    PubMed  CAS  Google Scholar 

  • Fluck M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity: from gene to form and function. Rev Physiol Biochem Pharmacol 146:159–216

    Article  PubMed  CAS  Google Scholar 

  • Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, Capaccioli S, Orlandini SZ (2000) Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 182:41–49

    Article  PubMed  CAS  Google Scholar 

  • Hikida RS, Van Nostran S, Murray JD, Staron RS, Gordon SE, Kraemer WJ (1997) Myonuclear loss in atrophied soleus muscle fibers. Anat Rec 247:350–354

    Article  PubMed  CAS  Google Scholar 

  • Itai Y, Kariya Y, Hoshino Y (2004) Morphological changes in rat hindlimb muscle fibres during recovery from disuse atrophy. Acta Physiol Scand 181:217–224

    Article  PubMed  CAS  Google Scholar 

  • Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287:C834–C843

    Article  PubMed  CAS  Google Scholar 

  • Kyriakides C, Favuzza J, Wang Y, Austen WG Jr, Moore FD Jr, Hechtman HB (2001) Recombinant soluble P-selectin glycoprotein ligand 1 moderates local and remote injuries following experimental lower-torso ischaemia. Br J Surg 88:825–830

    Article  PubMed  CAS  Google Scholar 

  • Machida S, Booth FW (2004) Regrowth of skeletal muscle atrophied from inactivity. Med Sci Sports Exerc 36:52–59

    Article  PubMed  Google Scholar 

  • McDonald KS, Fitts RH (1995) Effect of hindlimb unloading on rat soleus fiber force, stiffness, and calcium sensitivity. J Appl Physiol 79:1796–1802

    PubMed  CAS  Google Scholar 

  • Ohira Y, Yoshinaga T, Nomura T, Kawano F, Ishihara A, Nonaka I, Roy RR, Edgerton VR (2002) Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number. Adv Space Res 30:777–781

    Article  PubMed  CAS  Google Scholar 

  • Ohira Y, Yoshinaga T, Ohara M, Nonaka I, Yoshioka T, Yamashita-Goto K, Shenkman BS, Kozlovskaya IB, Roy RR, Edgerton VR (1999) Myonuclear domain and myosin phenotype in human soleus after bed rest with or without loading. J Appl Physiol 87:1776–1785

    PubMed  CAS  Google Scholar 

  • Papucci L, Formigli L, Schiavone N, Tani A, Donnini M, Lapucci A, Perna F, Tempestini A, Witort E, Morganti M, Nosi D, Orlandini GE, Zecchi Orlandini S, Capaccioli S (2004) Apoptosis shifts to necrosis via intermediate types of cell death by a mechanism depending on c-myc and bcl-2 expression. Cell Tissue Res 316:197–209

    Article  PubMed  CAS  Google Scholar 

  • Proskuryakov SY, Konoplyannikov AG, Gabai VL (2003) Necrosis: a specific form of programmed cell death? Exp Cell Res 283:1–16

    Article  PubMed  CAS  Google Scholar 

  • Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552

    Article  PubMed  CAS  Google Scholar 

  • Smith HK, Maxwell L, Martyn JA, Bass JJ (2000) Nuclear DNA fragmentation and morphological alterations in adult rabbit skeletal muscle after short-term immobilization. Cell Tissue Res 302:235–241

    Article  PubMed  CAS  Google Scholar 

  • Stelzer JE, Widrick JJ (2003) Effect of hindlimb suspension on the functional properties of slow and fast soleus fibers from three strains of mice. J Appl Physiol 95:2425–2433

    PubMed  Google Scholar 

  • Stevens L, Bastide B, Bozzo C, Mounier Y (2004) Hybrid fibres under slow-to-fast transformations: expression is of myosin heavy and light chains in rat soleus muscle. Pflugers Arch 448:507–514

    Article  PubMed  CAS  Google Scholar 

  • Stevens L, Firinga C, Gohlsch B, Bastide B, Mounier Y, Pette D (2000) Effects of unweighting and clenbuterol on myosin light and heavy chains in fast and slow muscles of rat. Am J Physiol Cell Physiol 279:C1558–C1563

    PubMed  CAS  Google Scholar 

  • Widrick JJ, Romatowski JG, Norenberg KM, Knuth ST, Bain JL, Riley DA, Trappe SW, Trappe TA, Costill DL, Fitts RH (2001) Functional properties of slow and fast gastrocnemius muscle fibers after a 17-day space flight. J Appl Physiol 90:2203–2211

    PubMed  CAS  Google Scholar 

  • Zhong H, Roy RR, Siengthai B, Edgerton VR (2005) Effects of inactivity on fiber size and myonuclear number in rat soleus muscle. J Appl Physiol 99:1494–1499

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Celeste Resende for her skilled technical assistance. This research was supported by the Fundação para a Ciência e a Tecnologia (FCT) POCI/DES/58772/2004, SFRH/BPD/24158/2005 and SFRH/BPD/14968/2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, R., Vitorino, R., Neuparth, M.J. et al. Cellular patterns of the atrophic response in murine soleus and gastrocnemius muscles submitted to simulated weightlessness. Eur J Appl Physiol 101, 331–340 (2007). https://doi.org/10.1007/s00421-007-0502-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0502-z

Keywords

Navigation