Skip to main content
Log in

Quiet stance control is affected by prior treadmill but not overground locomotion

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Treadmill locomotion is different with respect to overground walking and may require an adapted control mode. The relevant neural computational effort may produce lasting effects encroaching upon the performance of a subsequent postural task. The hypothesis of the present study was that, contrary to overground walking, treadmill walking has effects on quiet stance variables, in the assumption that the imposed locomotor activity is more critical to stance control than natural walking. Nine young subjects performed three different walking sessions: treadmill with eyes closed, treadmill with eyes open, overground walking with eyes open. Body sway area and sway path and the position of the centre of foot pressure during stance were recorded by a dynamometric platform under control, post-walking and post-recovery conditions, alternatively with eyes closed and eyes open. At variance with overground walking, treadmill locomotion produced an effect on body orientation in space during the subsequent stance trials. This consisted in a forward inclination of the body, not accompanied by increased body sway, lasting for a few minutes. Presence or absence of vision during treadmill locomotion did not induce differences in the amplitude or time-course of the post-effect. We argue that body inclination would be the consequence of a change in the postural reference produced by a message arising from treadmill locomotion itself, possibly connected to particularities in the control mode of this type of walking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alton F, Baldey L, Caplan S, Morrissey MC (1998) A kinematic comparison of overground and treadmill walking. Clin Biomech (Bristol, Avon) 13:434–440

    Article  Google Scholar 

  • Courtine G, De Nunzio AM, Schmid M, Beretta MV, Schieppati M (2007) Stance- and locomotion-dependent processing of vibration-induced proprioceptive inflow from multiple muscles in humans. J Neurophysiol 97:772–779

    Article  PubMed  Google Scholar 

  • De Nunzio AM, Nardone A, Schieppati M (2005) Head stabilization on a continuously oscillating platform: the effect of a proprioceptive disturbance on the balancing strategy. Exp Brain Res 165:261–272

    Article  PubMed  Google Scholar 

  • Derave W, Tombeux N, Cottyn J, Pannier JL, De Clercq D (2002) Treadmill exercise negatively affects visual contribution to static postural stability. Int J Sports Med 23:44–49

    Article  PubMed  CAS  Google Scholar 

  • Dickstein R, Laufer Y (2004) Light touch and center of mass stability during treadmill locomotion. Gait Posture 20:41–47

    Article  PubMed  Google Scholar 

  • Diener HC, Dichgans J, Bacher M, Gompf B (1984) Quantification of postural sway in normals and patients with cerebellar diseases. Electroencephalogr Clin Neurophysiol 57:134–142

    Article  PubMed  CAS  Google Scholar 

  • Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D (2001) Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J Biomech Eng 123:27–32

    Article  PubMed  CAS  Google Scholar 

  • Duclos C, Roll R, Kavounoudias A, Roll JP (2004) Long-lasting body leanings following neck muscle isometric contractions. Exp Brain Res 158:58–66

    Article  PubMed  CAS  Google Scholar 

  • Frenkel-Toledo S, Giladi N, Peretz C, Herman T, Gruendlinger L, Hausdorff JM (2005) Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease. Mov Disord 20:1109–1114

    Article  PubMed  Google Scholar 

  • Gramsbergen A (2005) Postural control in man: the phylogenetic perspective. Neural Plast 12:77–88

    Article  PubMed  Google Scholar 

  • Hashiba M (1998) Transient change in standing posture after linear treadmill locomotion. Jpn J Physiol 48:499–504

    Article  PubMed  CAS  Google Scholar 

  • Hesse S (2001) Locomotor therapy in neurorehabilitation. NeuroRehabilitation 16:133–139

    PubMed  CAS  Google Scholar 

  • Ivanenko YP, Wright WG, Gurfinkel VS, Horak F, Cordo P (2006) Interaction of involuntary post-contraction activity with locomotor movements. Exp Brain Res 169:255–260

    Article  PubMed  CAS  Google Scholar 

  • Kavounoudias A, Roll R, Roll JP (1998) The plantar sole is a ‘dynamometric map’ for human balance control. Neuroreport 9:3247–3252

    Article  PubMed  CAS  Google Scholar 

  • Kluzik J, Horak FB, Peterka RJ (2005) Differences in preferred reference frames for postural orientation shown by after-effects of stance on an inclined surface. Exp Brain Res 162:474–489

    Article  PubMed  Google Scholar 

  • Kluzik J, Horak FB, Peterka RJ (2007) Postural after-effects of stepping on an inclined surface. Neurosci Lett 413:93–98

    Article  PubMed  CAS  Google Scholar 

  • Lackner JR, Graybiel A (1980) Visual and postural motion aftereffects following parabolic flight. Aviat Space Environ Med 51:230–233

    PubMed  CAS  Google Scholar 

  • Lepers R, Bigard AX, Diard JP, Gouteyron JF, Guezennec CY (1997) Posture control after prolonged exercise. Eur J Appl Physiol Occup Physiol 76:55–61

    Article  PubMed  CAS  Google Scholar 

  • Lepers R, Breniere Y, Maton B (1999) Changes to the gait initiation programme following a running exercise in human subjects. Neurosci Lett 260:69–73

    Article  PubMed  CAS  Google Scholar 

  • Maurer C, Mergner T, Peterka RJ (2005) Multisensory control of human upright stance. Exp Brain Res 24:1–20

    Google Scholar 

  • Maurer C, Schweigart G, Mergner T (2006) Pronounced overestimation of support surface tilt during stance. Exp Brain Res 168:41–50

    Article  PubMed  CAS  Google Scholar 

  • Mulavara AP, Verstraete MC, Bloomberg JJ (2002) Modulation of head movement control in humans during treadmill walking. Gait Posture 16:271–282

    Article  PubMed  Google Scholar 

  • Murray MP, Spurr GB, Sepic SB, Gardner GM, Mollinger LA (1985) Treadmill vs. floor walking: kinematics, electromyogram, and heart rate. J Appl Physiol 59:87–91

    PubMed  CAS  Google Scholar 

  • Nagano A, Yoshioka S, Hay DC, Himeno R, Fukashiro S (2006) Influence of vision and static stretch of the calf muscles on postural sway during quiet standing. Hum Mov Sci 25:422–434

    Article  PubMed  Google Scholar 

  • Nardone A, Tarantola J, Giordano A, Schieppati M (1997) Fatigue effects on body balance. Electroencephalogr Clin Neurophysiol 105:309–320

    Article  PubMed  CAS  Google Scholar 

  • Peterka RJ, Loughlin PJ (2004) Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410–423

    Article  PubMed  Google Scholar 

  • Prokop T, Schubert M, Berger W (1997) Visual influence on human locomotion. Modulation to changes in optic flow. Exp Brain Res 114:63–70

    Article  PubMed  CAS  Google Scholar 

  • Schieppati M, Hugon M, Grasso M, Nardone A, Galante M (1994) The limits of equilibrium in young and elderly normal subjects and in Parkinsonians. Electroencephalogr Clin Neurophysiol 93:286–298

    PubMed  CAS  Google Scholar 

  • Schmid M, De Nunzio AM, Schieppati M (2005) Trunk muscle proprioceptive input assists steering of locomotion. Neurosci Lett 384:127–132

    Article  PubMed  CAS  Google Scholar 

  • Stolze H, Kuhtz-Buschbeck JP, Mondwurf C, Boczek-Funcke A, Johnk K, Deuschl G, Illert M (1997) Gait analysis during treadmill and overground locomotion in children and adults. Electroencephalogr Clin Neurophysiol 105:490–497

    Article  PubMed  CAS  Google Scholar 

  • Tarantola J, Nardone A, Tacchini E, Schieppati M (1997) Human stance stability improves with the repetition of the task: effect of foot position and visual condition. Neurosci Lett 228:75–78

    Article  PubMed  CAS  Google Scholar 

  • Thorstensson A, Nilsson J, Carlson H, Zomlefer MR (1984) Trunk movements in human locomotion. Acta Physiol Scand 121:9–22

    Article  PubMed  CAS  Google Scholar 

  • van de Crommert HW, Mulder T, Duysens J (1998) Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture 7:251–263

    Article  PubMed  Google Scholar 

  • Vogt L, Banzer W (1999) Vergleichende oberflächenelektromyographische Untersuchung ausgewählter Rumpf- und Hüftmuskeln beim Gehen auf der freien Gehstrecke und dem Laufbandergometer. Dtsch Z Sportmed 50:84–88

    Google Scholar 

  • Vogt L, Pfeifer K, Banzer W (2002) Comparison of angular lumbar spine and pelvis kinematics during treadmill and overground locomotion. Clin Biomech (Bristol, Avon) 17:162–165

    Article  CAS  Google Scholar 

  • Warabi T, Kato M, Kiriyama K, Yoshida T, Kobayashi N (2005) Treadmill walking and overground walking of human subjects compared by recording sole-floor reaction force. Neurosci Res 53:343–348

    Article  PubMed  Google Scholar 

  • Weber KD, Fletcher WA, Gordon CR, Melvill Jones G, Block EW (1998) Motor learning in the ‘podokinetic’ system and its role in spatial orientation during locomotion. Exp Brain Res 120:377–385

    Article  PubMed  CAS  Google Scholar 

  • Wierzbicka MM, Gilhodes JC, Roll JP (1998) Vibration-induced postural posteffects. J Neurophysiol 79:143–150

    PubMed  CAS  Google Scholar 

  • Wolpaw JR, Tennissen AM (2001) Activity-dependent spinal cord plasticity in health and disease. Annu Rev Neurosci 24:807–843

    Article  PubMed  CAS  Google Scholar 

  • Wright WG, Glasauer S (2003) Haptic subjective vertical shows context dependence: task and vision play a role during dynamic tilt stimulation. Ann N Y Acad Sci 1004:531–555

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the FIRB 2001 (RBNE01FJ4J) and PRIN 2005 (2005059738) grants from the Italian Ministry of University and Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Schieppati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanetti, C., Schieppati, M. Quiet stance control is affected by prior treadmill but not overground locomotion. Eur J Appl Physiol 100, 331–339 (2007). https://doi.org/10.1007/s00421-007-0434-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0434-7

Keywords

Navigation