Skip to main content
Log in

Supplemental oxygen and muscle metabolism in mitochondrial myopathy patients

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Patients with mitochondrial myopathy (MM) have a reduced capacity to perform exercise due to a reduced oxidative capacity. We undertook this study to determine whether skeletal muscle metabolism could be improved with oxygen therapy in patients with MM. Six patients with MM and six controls, matched for age, gender and physical activity, underwent 31P-magnetic resonance spectroscopy (31P-MRS) examination. 31P-MR spectra were collected at rest and in series during exercise and recovery whilst breathing normoxic (0.21 O2) or hyperoxic (1.0 O2) air. At rest, MM showed an elevated [ADP] (18 ± 3 μmol/l) and pH (7.03 ± 0.01) in comparison to the control group (12 ± 1 μmol/l, 7.01 ± 0.01) (P < 0.05) consistent with mitochondrial dysfunction. Oxygen supplementation did not change resting metabolites in either MM or the control group (P > 0.05). Inferred maximal ATP synthesis rate improved by 33% with oxygen in MM (21 ± 3 vs. 28 ± 5 mmol/(l min), P < 0.05) but only improved by 5% in controls (40 ± 3 vs. 42 ± 3 mmol/(l min), P > 0.05). We conclude that oxygen therapy is associated with significant improvements in muscle metabolism in patients with MM. These data suggest that patients with MM could benefit from therapies which improve the provision of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ATP, [ATP]:

Adenosine triphosphate; cytosolic ATP concentration

ADP, [ADP]:

Adenosine diphosphate; cytosolic ADP concentration

PCr, [PCr]:

Phosphocreatine; cytosolic PCr concentration

CPEO:

Chronic progressive external ophthalmoplegia

\( {{{\text{F}}_{{{\text{IO}}_{{\text{2}}} }} } } \) :

Fraction of inspired oxygen

MELAS:

Mitochondrial encephalopathy lactic acidosis and stroke like episodes

MM:

Mitochondrial myopathy

NIRS:

Near infra-red spectrophotometry

31P-MRS:

Phosphorous magnetic resonance spectroscopy

PCr, [PCr]:

Phosphocreatine; cytosolic PCr concentration

V :

Initial rate of PCr recovery from exercise

References

  • Abe K, Matsuo Y, Kadekawa J, Inoue S, Yanagihara T (1997) Measurement of tissue oxygen consumption in patients with mitochondrial myopathy by noninvasive tissue oximetry. Neurology 49:837–841

    PubMed  CAS  Google Scholar 

  • Ainsworth BE, Haskell WL, Leon AS, Jacobs DR Jr, Montoye HJ, Sallis JF, Paffenbarger RS Jr (1993a) Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc 25:71–80

    Article  CAS  Google Scholar 

  • Ainsworth BE, Jacobs DR Jr, Leon AS, Richardson MT, Montoye HJ (1993b) Assessment of the accuracy of physical activity questionnaire occupational data. J Occup Med 35:1017–1027

    CAS  Google Scholar 

  • Bank W, Chance B (1994) An oxidative defect in metabolic myopathies: diagnosis by noninvasive tissue oximetry. Ann Neurol 36:830–837

    Article  PubMed  CAS  Google Scholar 

  • Bank W, Park J, Lech G, Chance B (1998) Near-infrared spectroscopy in the diagnosis of mitochondrial disorders. Biofactors 7:243–245

    PubMed  CAS  Google Scholar 

  • Bernstein MS, Morabia A, Sloutskis D (1999) Definition and prevalence of sedentarism in an urban population. Am J Pub Health 89:862–867

    Article  PubMed  CAS  Google Scholar 

  • Chen JT, Taivassalo T, Argov Z, Arnold DL (2001) Modeling in vivo recovery of intracellular pH in muscle to provide a novel index of proton handling: application to the diagnosis of mitochondrial myopathy. Magn Reson Med 46:870–878

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF, Howell N, Lightowlers RN, Turnbull DM (1997) Molecular pathology of MELAS and MERRF. The relationship between mutation load and clinical phenotypes. Brain 120:1713–1721

    Article  PubMed  Google Scholar 

  • Haseler LJ, Hogan MC, Richardson RS (1999) Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. J Appl Physiol 86:2013–2018

    PubMed  CAS  Google Scholar 

  • Haseler LJ, Kindig CA, Richardson RS, Hogan MC (2004a) The role of oxygen in determining phosphocreatine onset kinetics in exercising humans. J Physiol 558:985–992

    Article  CAS  Google Scholar 

  • Haseler LJ, Lin AP, Richardson RS (2004b) Skeletal muscle oxidative metabolism in sedentary humans: 31P-MRS assessment of O2 supply and demand limitations. J Appl Physiol 37:1077–1081

    Article  Google Scholar 

  • Jeneson JA, Wiseman RW, Westerhoff HV, Kushmerick MJ (1996) The signal transduction function for oxidative phosphorylation is at least second order in ADP. J Biol Chem 271:27995–27998

    Article  PubMed  CAS  Google Scholar 

  • Jensen TD, Kazemi-Esfarjani P, Skomorowska E, Vissing J (2002) A forearm exercise screening test for mitochondrial myopathy. Neurology 58:1533

    PubMed  Google Scholar 

  • Kemp GJ (2004) Mitochondrial dysfunction in chronic ischemia and peripheral vascular disease. Mitochondrion 4:629–640

    Article  PubMed  CAS  Google Scholar 

  • Kemp GJ, Radda GK (1994) Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Mag Reson Q 10:43–63

    CAS  Google Scholar 

  • Kemp GJ, Taylor DJ, Dunn JF, Frostick SP, Radda GK (1993a) Cellular energetics of dystrophic muscle. J Neurol Sci 116:201–206

    Article  CAS  Google Scholar 

  • Kemp GJ, Taylor DJ, Styles P, Radda GK (1993b) The production, buffering and efflux of protons in human skeletal muscle during exercise and recovery. NMR Biomed 6:73–83

    CAS  Google Scholar 

  • Kemp GJ, Taylor DJ, Thompson CH, Hands LJ, Rajagopalan B, Styles P, Radda GK (1993c) Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise. NMR Biomed 6:302–310

    CAS  Google Scholar 

  • Kemp GJ, Thompson CH, Taylor DJ, Radda GK (1997) Proton efflux in human skeletal muscle during recovery from exercise. Eur J Appl Physiol Occup Physiol 76:462–471

    Article  PubMed  CAS  Google Scholar 

  • Korzeniewski B (2001) Theoretical studies on the regulation of oxidative phosphorylation in intact tissues. Biochim Biophys Acta 1504:31–45

    Article  PubMed  CAS  Google Scholar 

  • Lindholm H, Lofberg M, Somer H, Naveri H, Sovijarvi A (2004) Abnormal blood lactate accumulation after exercise in patients with multiple mitochondrial DNA deletions and minor muscular symptoms. Clin Physiol Funct Imaging 24:109–115

    Article  PubMed  CAS  Google Scholar 

  • Moon R, Richards J (1973) Determination of intracellular pH by 31P magnetic resonance spectroscopy. J Biol Chem 248:7276–7278

    PubMed  CAS  Google Scholar 

  • Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D (2001a) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31:269–286

    Article  CAS  Google Scholar 

  • Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D (2001b) Java-based graphical user interface for the MRUI quantitation package. Magma 12:141–152

    CAS  Google Scholar 

  • Pedersen PK, Kiens B, Saltin B (1999) Hyperoxia does not increase peak muscle oxygen uptake in small muscle group exercise. Acta Physiol Scand 166:309–318

    Article  PubMed  CAS  Google Scholar 

  • Schmiedel J, Jackson S, Schafer J, Reichmann H (2003) Mitochondrial cytopathies. J Neurol 250:267–277

    Article  PubMed  CAS  Google Scholar 

  • Stellingwerff T, LeBlanc PJ, Hollidge MG, Heigenhauser GJF, Spriet LL (2006) Hyperoxia decreases muscle glycogenolysis, lactate production, and lactate efflux during steady-state exercise. Am J Physiol Endocrinol Metab 290:E1180–1190

    Article  PubMed  CAS  Google Scholar 

  • Sue C, Tanji K, Hadjigeorgiou G, Andreu A, Nishino I, Krishna S, Bruno C, Hirano M, Shanske S, Bonilla E, Fischel-Ghodsian N, DiMauro S, Friedman RA (1999) Maternally inherited hearing loss in a large kindred with a novel T7511C mutation in the mitochondrial DNA tRNA(Ser(UCN)) gene. Neurology 52:1905–1908

    PubMed  CAS  Google Scholar 

  • Taivassalo T, Abbott A, Wyrick P, Haller RG (2002) Venous oxygen levels during aerobic forearm exercise: an index of impaired oxidative metabolism in mitochondrial myopathy. Ann Neurol 51:38–44

    Article  PubMed  Google Scholar 

  • Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG (2003) The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain 126:413–423

    Article  PubMed  Google Scholar 

  • Tarnopolsky MA, Parise G (1999) Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve 22:1228–1233

    Article  PubMed  CAS  Google Scholar 

  • Taylor DJ, Kemp GJ, Radda GK (1994) Bioenergetics of skeletal muscle in mitochondrial myopathy. J Neurol Sci 127:198–206

    Article  PubMed  CAS  Google Scholar 

  • Trenell MI, Sue CM, Sachinwalla T, Kemp GJ, Thompson CH (2006) Aerobic exercise and muscle metabolism in patients with mitochondrial myopathy. Muscle Nerve 33:524–531

    Article  PubMed  CAS  Google Scholar 

  • van Beekvelt MC, van Engelen BG, Wevers RA, Colier WN (1999) Quantitative near-infrared spectroscopy discriminates between mitochondrial myopathies and normal muscle. Ann Neurol 46:667–670

    Article  PubMed  Google Scholar 

  • Vanhamme L, Van Huffel S, Van Hecke P, van Ormondt D (1999) Time-domain quantification of series of biomedical magnetic resonance spectroscopy signals. J Magn Reson 140:120–130

    Article  PubMed  CAS  Google Scholar 

  • Winograd CH, Newman AB (2002) Oxygen therapy for mitochondrial myopathy. Chest 122:1496–1497

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

MT was supported in part by a Sydney University Nutrition Research Foundation scholarship. This work was supported by a Pacific Healthcare research grant. The authors wish to thank the patients and volunteers for their participation. We would also like to thank Dr. Toos Sachinwalla, Michelle Luong David Walton, and Anita Kipf-Orr for assistance in acquiring MR data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Trenell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trenell, M.I., Sue, C.M., Thompson, C.H. et al. Supplemental oxygen and muscle metabolism in mitochondrial myopathy patients. Eur J Appl Physiol 99, 541–547 (2007). https://doi.org/10.1007/s00421-006-0372-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0372-9

Keywords

Navigation