Skip to main content

Advertisement

Log in

CO2 rebreathing model in COPD: blood-to-gas equilibration

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Rebreathing in a closed system can be used to estimate mixed venous \(P_{{\rm CO}_{2}}\;(P\bar{v}_{{\text{CO}}_2})\) and cardiac output, but these estimates are affected by \(\dot{V}_{\rm A}/\dot{Q}\) heterogeneity. The purpose of this study was to validate a mathematical model of CO2 exchange during CO2 rebreathing in 29 patients with chronic obstructive pulmonary disease (COPD), with baseline arterial \(P_{{\rm CO}_{2}}\;(\hbox{Pa}_{{\rm CO}_{2}})\) ranging from 28 to 60 mmHg. Rebreathing increased end-tidal \(P_{{\rm CO}_{2}}\;(\hbox{PET}_{{\rm CO}_{2}})\) by 20 mmHg over 2.2 min. This model employed baseline values for inspired (bag) \(P_{{\rm CO}_{2}},\) estimated \(P\bar{v}_{{\text{CO}}_2},\) distribution of ventilation and blood flow in one high \(\dot{V}_{\rm A}/\dot{Q}\) and one low \(\dot{V}_{\rm A}/\dot{Q}\) compartment, the ventilation increase and conservation of mass equations to simulate time courses of \(\hbox{PI}_{{\rm CO}_{2}},\hbox{PET}_{{\rm CO}_{2}},\; P\bar{v}_{{\text{CO}}_{2}}\) and \(\hbox{Pa}_{{\rm CO}_{2}}.\) Measured \(\hbox{PI}_{{\rm CO}_{2}}\) and \(\hbox{PET}_{{\rm CO}_{2}}\) during rebreathing differed by an average (SEM) of 1.4 (0.4) mmHg from simulated values. By end of rebreathing, predicted \(P\bar{v}_{{\text{CO}}_2}\) was lower than measured and predicted \(\hbox{Pa}_{{\rm CO}_{2}},\) indicating gas to blood CO2 flux. Estimates of the ventilatory response to CO2, quantified as the slope (S) of the ventilation increase versus \(\hbox{PET}_{{\rm CO}_{2}},\) were inversely related to gas-to-blood \(P_{{\rm CO}_{2}}\) disequilibria due to \(\dot{V}_{\rm A}/\dot{Q}\) heterogeneity and buffer capacity (BC), but not airflow limitation. S may be corrected for these artifacts to restore S as a more valid noninvasive index of central CO2 responsiveness. We conclude that a rebreathing model incorporating baseline \(\dot{V}_{\rm A}/\dot{Q}\) heterogeneity and BC can simulate gas and blood \(P_{{\rm CO}_{2}}\) in patients with COPD, where \(\dot{V}_{\rm A}/\dot{Q}\) variations are large and variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander JK, West JR, Wood JA, Richards DW (1955) Analysis of the respiratory response to carbon dioxide inhalation in varying clinical states of hypercapnia, anoxia, and acid–base derangement. J Clin Invest 34:511–532

    PubMed  CAS  Google Scholar 

  • Campbell EJ (2001) Multum in parvo: explorations with a small bag of carbon dioxide. Can Respir J 8:271–278

    PubMed  CAS  Google Scholar 

  • Cherniack NS, Longobardo GS (1970) Oxygen and carbon dioxide gas stores of the body. Physiol Rev 50:196–243

    PubMed  CAS  Google Scholar 

  • Clark TJH (1968) The ventilatory response to CO2 in chronic airways obstruction measured by a rebreathing method. Clin Sci 34:559–568

    Google Scholar 

  • Duffin J, Mohan RM, Vasiliou P, Stephenson R, Mahamed S (2000) A model of the chemoreflex control of breathing in humans: model parameters measurement. Respir Physiol 120:13–26

    Article  PubMed  CAS  Google Scholar 

  • Fahey PJ, Hyde R (1983) “Won’t breathe” vs. “Can’t breathe” detection of depressed ventilatory drive in patients with obstructive pulmonary disease. Chest 84:19–25

    PubMed  CAS  Google Scholar 

  • Field GB, Jones G, McFadden ER Jr (1971) Alveolar-arterial \(P_{{\rm CO}_{2}}\) differences during rebreathing in chronic airways obstruction. J Appl Physiol 31:490–496

    PubMed  CAS  Google Scholar 

  • Gama de Abreu M, Melo MFV, Giannella-Neto A (2000) Pulmonary capillary blood flow by partial CO2 rebreathing: importance of the regularity of the respiratory pattern. Clin Physiol 20:388–398

    Article  Google Scholar 

  • Gama de Abreu M, Winkler T, Pahlitzsch T, Weismann D, Albrect DM (2003). Performance of the partial CO2 rebreathing technique under different hemodynamic and ventilation/perfusion matching conditions. Crit Care Med 31:543–551

    Article  CAS  Google Scholar 

  • Garrard CS, Lane DJ (1981) Pattern of carbon dioxide stimulated breathing in patients with chronic airways obstruction. Thorax 36:130–134

    PubMed  CAS  Google Scholar 

  • Hirshman CA, McCullough RE, Weil JV (1975) Normal values for hypoxic and hypercapnic ventilatory drives in man. J Appl Physiol 38:1095–1098

    PubMed  CAS  Google Scholar 

  • Jones NL, Rebuck AS (1973) Rebreathing equilibration of CO2 during exercise. J Appl Physiol 35:538–541

    PubMed  CAS  Google Scholar 

  • Jones NL, Robertson DG, Kane JW, Campbell EJM (1972) Effect of \(P_{{\rm CO}_{2}}\) level on alveolar-arterial \(P_{{\rm CO}_{2}}\) difference during rebreathing. J Appl Physiol 32:782–787

    PubMed  CAS  Google Scholar 

  • Kim TS, Rahn H, Farhi LE (1966) Estimation of true venous and arterial \(P_{{\rm CO}_{2}}\) by gas analysis of a single breath. J Appl Physiol 21:1338–1344

    PubMed  CAS  Google Scholar 

  • King TKC, Yu D (1970) Factors determining the ventilatory response to carbon dioxide in chronic obstructive airways disease. Clin Sci 39:653–662

    PubMed  CAS  Google Scholar 

  • Lane DJ, Howell JBL (1970) Relationship between sensitivity to carbon dioxide and clinical features in patients with chronic airways obstruction. Thorax 25:150–159

    PubMed  CAS  Google Scholar 

  • Laszlo G (2004) Respiratory measurements of cardiac output: from elegant idea to useful test. J Appl Physiol 96:428–437

    Article  PubMed  Google Scholar 

  • Laszlo G, Clark TJ, Pope H, Campbell EJM (1971) Differences between alveolar and arterial \(P_{{\rm CO}_{2}}\) during rebreathing experiments in resting human subjects. Respir Physiol 12:36–52

    Article  PubMed  CAS  Google Scholar 

  • Loeppky JA, Luft UC, Fletcher ER (1983) Quantitative description of whole blood CO2 dissociation curve and Haldane effect. Respir Physiol 51:167–181

    Article  PubMed  CAS  Google Scholar 

  • Loeppky JA, Scotto P, Piiper J (1985) Transient \(P_{{\rm O}_{2}}\) and \(P_{{\rm CO}_{2}}\) differences between end-tidal gas and arterial blood during rebreathing in awake days. Respir Physiol 60:135–144

    Article  PubMed  CAS  Google Scholar 

  • Loeppky JA, Altobelli SA, Caprihan A, Chick TW (1988) Two-compartment analysis of \(\dot{V}_{\rm A}/\dot{Q}\) inequality and transient blood–gas differences. In: Gonzalez NC, Fedde MR (eds) Oxygen Transfer from Atmosphere to Tissues (Advances in Experimental Medicine and Biology, Vol. 227). Plenum, New York, pp 75–84

  • Loeppky JA, Fletcher ER, Roach RC, Luft UC (1993) Relationship between whole blood base excess and CO2 content in vivo. Respir Physiol 94:109–120

    Article  PubMed  CAS  Google Scholar 

  • Loeppky JA, Caprihan A, Altobelli SA, Icenogle MV, Scotto P, Vidal Melo MF (2006) Validation of a two-compartment model of ventilation/perfusion distribution. Respir Physiol Neurobiol 151:74–92

    Article  PubMed  Google Scholar 

  • Lopata M, LaFata J, Evanich MJ, Lourenco RV (1977) Effects of flow-resistive loading on mouth occlusion pressure during CO2 rebreathing. Am Rev Resp Dis 115:73–81

    PubMed  CAS  Google Scholar 

  • Luft U, Roorbach EH, MacQuigg RE (1955) Pulmonary nitrogen clearance as a criterion of ventilatory efficiency. Am Rev Tubercolosis Pul Dis 72:465–478

    CAS  Google Scholar 

  • Matthews CME, Laszlo G, Campbell EJM, Read DJC (1969) A model for the distribution and transport of CO2 in the body and the ventilatory response to CO2. Respir Physiol 6:45–67

    Article  Google Scholar 

  • McEvoy JDS, Jones NL, Campbell EJM (1973) Alveolar-arterial \(P_{{\rm CO}_{2}}\) difference during rebreathing in patents with chronic hypercapnia. J Appl Physiol 35:542–545

    PubMed  CAS  Google Scholar 

  • Montes de Oca MM, Celli BR (1998) Mouth occlusion pressure, CO2 response and hypercapnia in severe chronic obstructive pulmonary disease. Eur Respir J 12:666–671

    Article  CAS  Google Scholar 

  • Odenstedt H, Stenqvist O, Lundin S (2002) Clinical evaluation of a partial CO2 rebreathing technique for cardiac output monitoring in critically ill patients. Acta Anaesthesiol Scand 46:152–159

    Article  PubMed  CAS  Google Scholar 

  • Patakas D, Louridas G, Argyroploliou P, Stavropolus C (1978) Respiratory drive in patents with chronic obstructive pulmonary disease. Respiration 36:194–200

    Article  PubMed  CAS  Google Scholar 

  • Piiper J (1986) Blood–gas equilibrium of carbon dioxide in lungs: a continuing controversy. J Appl Physiol 60:1–8

    Article  PubMed  CAS  Google Scholar 

  • Prime FJ, Westlake EK (1954) The respiratory response to CO2 in emphysema. Clin Sci 13:321–332

    PubMed  CAS  Google Scholar 

  • Read DJC (1967) A clinical method for assessing the ventilatory response to carbon dioxide. Austral Ann Med 16:20–32

    CAS  Google Scholar 

  • Read DJC, Leigh J (1967) Blood–brain tissue \(P_{{\rm CO}_{2}}\) relationship and ventilation during rebreathing. J Appl Physiol 23:53–70

    PubMed  CAS  Google Scholar 

  • Scano G, Spinelli A, Duranti R, Gorini M, Gigliotti F, Goti P, Milic-Emili J (1995) Carbon dioxide responsiveness in COPD patients with and without chronic hypercapnia. Eur Respir J 8:78–85

    Article  PubMed  CAS  Google Scholar 

  • Scotto S, Loeppky JA, Piiper J, Farhi LE (1987) Acid-base status immediately following rapid changes of alveolar gas composition in awake dogs. Respir Physiol 68:251–258

    Article  PubMed  CAS  Google Scholar 

  • Strachova Z, Plum F (1973) Reproducibility of the rebreathing carbon dioxide response test using an improved method. Am Rev Resp Dis 107:864–869

    PubMed  CAS  Google Scholar 

  • Vidal Melo MF, Loeppky JA, Caprihan A, Luft UC (1993) Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange. Comp Biomed Res 26:103–120

    Article  CAS  Google Scholar 

  • Wade OL, Bishop J (1962) Cardiac output and regional blood flow. FA Davis, Philadelphia, pp 33–37

    Google Scholar 

Download references

Acknowledgments

We thank the subjects who took part in this study for their time and cooperation. We also appreciate the facilities and funding made available for this study from the Lovelace Medical Foundation and New Mexico Resonance. A research grant from the Cardiology department, University of New Mexico School of Medicine to Milton Icenogle in the Cardiology section of the VA Medical Center in Albuquerque also provided support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack A. Loeppky.

Additional information

Laboratory of origin: These experiments were performed at the Lovelace Medical Foundation and at New Mexico Resonance in Albuquerque NM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loeppky, J.A., Icenogle, M.V., Caprihan, A. et al. CO2 rebreathing model in COPD: blood-to-gas equilibration. Eur J Appl Physiol 98, 450–460 (2006). https://doi.org/10.1007/s00421-006-0288-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0288-4

Keywords

Navigation