Skip to main content
Log in

Response of antioxidant defences to oxidative stress induced by prolonged exercise: antioxidant enzyme gene expression in lymphocytes

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The response of lymphocyte and plasma antioxidant defences to a prolonged exercise as a cycling stage in a professional race was analysed. Antioxidant enzyme activities and gene expression, carbonyl derivative and MDA levels were determined in lymphocytes. Plasma levels of vitamin E, carotenes, protein carbonyl derivatives and the test d-Roms were measured. Significant increases in plasmatic carbonyls and in the test d-Roms were observed after the cycling stage. No significant differences were found in the lymphocyte MDA and carbonyl derivative levels. A significant increase was found in plasma vitamin E concentration after the cycling stage; however, the lymphocyte vitamin E concentration did not change. Significant increases were observed in lymphocyte total superoxide dismutase (SOD) activity and in the levels of CuZn-SOD and Mn-SOD isoenzymes. The moderate levels of oxidative stress in the lymphocyte induced a cellular adaptation to exercise enough to counteract the negative effects of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aebi HE (1984) Catalase. In: Bergmeyer HU (ed) Methods in enzymatic analysis. Verlag Chemie, Basel, pp 273–286

    Google Scholar 

  • Aguilo A, Tauler P, Fuentespina E, Tur JA, Cordova A, Pons A (2005) Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav 84:1–7

    Article  CAS  PubMed  Google Scholar 

  • Alessio HM (1993) Exercise-induced oxidative stress. Med Sci Sports Exerc 25:218–224

    CAS  PubMed  Google Scholar 

  • Boyum A (1964) Separation of white blood cells. Nature 204:793–794

    Article  CAS  PubMed  Google Scholar 

  • Burtis CA, Ashwood E (1984) Tietz textbook of clinical chemistry. WB Saunders, Philadelphia

    Google Scholar 

  • Cannon J, Blumberg JB (2000) Acute phase immune response in exercise. In: Sen CK, Packer L, Hänninen O (eds) Handbook of oxidants and antioxidants in exercise. Elsevier, Amsterdam, pp 177–194

    Chapter  Google Scholar 

  • Cases N, Aguilo A, Tauler P, Sureda A, Llompart I, Pons A, Tur JA (2005) Differential response of plasma and immune cell’s vitamin E levels to physical activity and antioxidant vitamin supplementation. Eur J Clin Nutr 59:781–788

    Article  CAS  PubMed  Google Scholar 

  • Cesarone MR, Belcaro G, Carratelli M, Cornelli U, De Sanctis MT, Incandela L, Barsotti A, Terranova R, Nicolaides A (1999) A simple test to monitor oxidative stress. Int Angiol 18:127–130

    CAS  PubMed  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  CAS  PubMed  Google Scholar 

  • Gleeson M, Nieman DC, Pedersen BK (2004) Exercise, nutrition and immune function. In: Maughan RJ, Burke LM, Coyle EF (eds) Food, nutrition and sports performance II. Rouledge, London, pp 186–203

    Google Scholar 

  • Goldberg DM, Spooner RJ (1985) Glutathione Reductase. In: Bergmeyer HU (eds) Methods in enzymatic analysis. Verlag Chemie, Basel, pp 258–265

    Google Scholar 

  • Gomez-Cabrera MC, Borras C, Pallardo FV, Sastre J, Ji LL, Vina J (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567:113–120

    Article  CAS  PubMed  Google Scholar 

  • Hollander J, Fiebig R, Gore M, Ookawara T, Ohno H, Ji LL (2001) Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pflugers Arch 442:426–434

    Article  CAS  PubMed  Google Scholar 

  • Jackson MJ (1999) Free radicals in skin and muscle: damaging agents or signals for adaptation? Proc Nutr Soc 58:673–676

    Article  CAS  PubMed  Google Scholar 

  • Ji L (1999) Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med 222:283–292

    Article  CAS  PubMed  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    CAS  PubMed  Google Scholar 

  • McArdle F, Pattwell DM, Vasilaki A, McArdle A, Jackson MJ (2005) Intracellular generation of reactive oxygen species by contracting skeletal muscle cells. Free Radic Biol Med 39:651–657

    Article  CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  • Mooren FC, Bloming D, Lechtermann A, Lerch MM, Volker K (2002) Lymphocyte apoptosis after exhaustive and moderate exercise. J Appl Physiol 93:147–153

    CAS  PubMed  Google Scholar 

  • Nieman DC (1994) Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc 26:128–139

    Article  CAS  PubMed  Google Scholar 

  • Niess AM, Passek F, Lorenz I, Schneider EM, Dickhuth HH, Northoff H, Fehrenbach E (1999) Expression of the antioxidant stress protein heme oxygenase-1 (HO-1) in human leukocytes. Free Radic Biol Med 26:184–192

    Article  CAS  PubMed  Google Scholar 

  • Packer L (1997) Oxidants, antioxidant nutrients and the athlete. J Sports Sci 15:353–363

    Article  CAS  PubMed  Google Scholar 

  • Packer L, Almada AL, Rothfuss LM, Wilson DS (1989) Modulation of tissue vitamin E levels by physical exercise. Ann N Y Acad Sci 570:311–321

    Article  CAS  PubMed  Google Scholar 

  • Reid MB, Shoji T, Moody MR, Entman ML (1992) Reactive oxygen in skeletal muscle II. Extracellular release of free radicals. J Appl Physiol 73:1805–1809

    CAS  PubMed  Google Scholar 

  • Sjodin B, Hellsten Westing Y, Apple FS (1990) Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med 10:236–254

    Article  CAS  PubMed  Google Scholar 

  • Sureda A, Tauler P, Aguilo A, Cases N, Fuentespina E, Cordova A, Tur JA, Pons A (2005) Relation between oxidative stress markers and antioxidant endogenous defences during exhaustive exercise. Free Radic Res 39:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Ohno H, Oh-ishi S, Kizaki T, Ookawara T, Fujii J, Radák Z, Taniguchi N (2000) Superoxide dismutases in exercise and disease. In: Sen C, Parker L, Hänninen O (eds) Handbook of oxidants and antioxidants in exercise. Elsevier, Amsterdam, pp 243–295

    Chapter  Google Scholar 

  • Tauler P, Aguilo A, Fuentespina E, Tur JA, Pons A (2002) Diet supplementation with vitamin E, vitamin C and beta-carotene cocktail enhances basal neutrophil antioxidant enzymes in athletes. Pflugers Arch 443:791–797

    Article  CAS  PubMed  Google Scholar 

  • Tauler P, Aguilo A, Gimeno I, Guix P, Tur JA, Pons A (2004) Different effects of exercise tests on the antioxidant enzyme activities in lymphocytes and neutrophils. J Nutr Biochem 15:479–484

    Article  CAS  PubMed  Google Scholar 

  • Tauler P, Aguilo A, Gimeno I, Noguera A, Agusti A, Tur JA, Pons A (2003) Differential response of lymphocytes and neutrophils to high intensity physical activity and to vitamin C diet supplementation. Free Radic Res 37:931–938

    Article  CAS  PubMed  Google Scholar 

  • Tauler P, Sureda A, Cases N, Aguilo A, Rodríguez-Marroyo JA, Villa G, Tur JA, Pons A (2005) Increased lymphocyte antioxidant defences in response to exhaustive exercise do not prevent oxidative damage. J Nutr Biochem (In press)

  • Thompson D, Basu-Modak S, Gordon M, Poore S, Markovitch D, Tyrrell RM (2005) Exercise-induced expression of heme oxygenase-1 in human lymphocytes. Free Radic Res 39:63–69

    Article  CAS  PubMed  Google Scholar 

  • Tietz N (1999) Clinical guide to laboratory tests. WB Saunders, Philadelphia

    Google Scholar 

  • Vider J, Laaksonen DE, Kilk A, Atalay M, Lehtmaa J, Zilmer M, Sen CK (2001) Physical exercise induces activation of NF-kappaB in human peripheral blood lymphocytes. Antioxid Redox Signal 3:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Wang JS, Huang YH (2005) Effects of exercise intensity on lymphocyte apoptosis induced by oxidative stress in men. Eur J Appl Physiol 12:1–8

    Google Scholar 

  • Weeks I, Woodhead JS (1984) Chemiluminiscence assays. J Clin Immunoassay 7:82–89

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been granted aid by the Spanish Ministry of Health (Programme of Promotion of Biomedical Research and Health Sciences, Project PI021593), the Spanish Ministry of Science and Education (DEP2005-00238-C04-02/EOU) and the FEDER funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Tauler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cases, N., Sureda, A., Maestre, I. et al. Response of antioxidant defences to oxidative stress induced by prolonged exercise: antioxidant enzyme gene expression in lymphocytes. Eur J Appl Physiol 98, 263–269 (2006). https://doi.org/10.1007/s00421-006-0273-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0273-y

Keywords

Navigation