Methodological aspects of maximal lactate steady state—implications for performance testing

Abstract

The maximal lactate steady state (MLSS) is the highest blood lactate concentration (BLC) that can be identified as maintaining a steady-state during a prolonged submaximal constant workload. Comparative interpretation of published data about MLSS is complicated by the fact that different methods of testing have been utilized. Thus, three methods, corresponding to the time course of changes in BLC incurred during either 30 min (MLSS I) or 20 min (MLSS II and III) of constant submaximal workload exercise, were compared in 26 male subjects [mean (SD) age 24.6 (5.6) years, height 181.6 (4.9) cm, body mass 74.4 (5.2) kg]. MLSS I [5.1 (1.3) mmol·l-1], II [4.9 (1.3) mmol·l-1], and III [4.3 (1.3) mmol·l-1] were different (P<0.01). The workload corresponding to MLSS III [244.8 (44.0) W] was lower (P<0.01) than that at MLSS I [254.0 (40.8) W] and II [251.9 (40.4) W]. No difference could be confirmed between the workloads established for MLSS I and MLSS II. The differences between MLSS I, MLSS II, and MLSS III and corresponding workloads reflect insufficient contribution to lactate kinetics by testing procedures that depend strongly upon the time course of changes in BLC during the initial 20–25 min of constant-workload exercise. Based on the present findings, constant-load tests lasting at least 30 min and a BLC increase of no more than 1.0 mmol·l-1 after the 10th testing minute appear to be the most reasonable with respect to valid testing results.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Aunola S, Rusko H (1992) Does anaerobic threshold correlate with maximal lactate steady-state? J Sports Sci 10:309–323

    CAS  PubMed  Google Scholar 

  2. Beneke R (1995) Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady-state in rowing. Med Sci Sports Exerc 27:863–867

    CAS  PubMed  Google Scholar 

  3. Beneke R, von Duvillard SP (1996) Determination of maximal lactate steady-state response in selected sports events. Med Sci Sports Exerc 28:241–246

    CAS  PubMed  Google Scholar 

  4. Beneke R, Boldt F, Richter TH, Kress A, Leithäuser R, Behn C (1994) Laktatmessung in der Sportmedizin—drei Geräte im Vergleich. Dtsch Z Sportmed 45:60–69

    Google Scholar 

  5. Beneke R, Schwarz V, Leithäuser R, Hütler M, von Duvillard SP (1996) Maximal lactate steady-state in children. Ped Exerc Sci 8:328–336

    Google Scholar 

  6. Billat V, Dalmay F, Antonini MT, Chassain AP (1994) A method for determining the maximal steady state of blood lactate concentration from two levels of submaximal exercise. Eur J Appl Physiol 69:196–202

    CAS  Google Scholar 

  7. Dost FH (1968) Grundlagen der Pharmakokinetik. Georg Thieme Verlag, Stuttgart, pp 29–62

  8. Haverty M, Kenney WL, Hodgson JL (1988) Lactate and gas exchange responses to incremental and steady state running. Br J Sports Med 22:51–54

    CAS  PubMed  Google Scholar 

  9. Heck H (1990) Laktat in der Leistungsdiagnostik. Wissenschaftliche Schriftenreihe des deutschen Sportbundes. Verlag Karl Hofmann, Schorndorf

  10. Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W (1985) Justification of the 4-mmol/l lactate threshold. Int J Sports Med 6:117–130

    CAS  PubMed  Google Scholar 

  11. Heck H, von Rosen I, Rosskopf P (1994) Dynamik des Blutlaktats bei konstanter Fahrrad- und Drehkurbelarbeit. In: Liesen H, Weiß M, Baum M (eds) Regulations- und Repairmechanismen. Dt Ärzte-Verlag, Köln, pp 187–190

  12. Mader A, Heck H (1986) A theory of the metabolic origin of "anaerobic threshold". Int J Sports Med 7[Suppl 1]:45–65

  13. Mocellin R, Heusgen M, Korsten-Reck U (1990) Maximal steady-state blood lactate levels in 11-year-old-boys. Eur J Pediatr 149:771–773

    CAS  PubMed  Google Scholar 

  14. Stockhausen W, Huber G, Maier JB, Tinsel J, Keul J (1995) Ein einzeitiges Verfahren zur Bestimmung des maximalen Laktat-Steady-State auf dem Fahrradergometer. Dtsch Z Sportmed 46:291–302

    Google Scholar 

  15. Urhausen A, Coen B, Weiler B, Kindermann W (1993) Individual anaerobic threshold and maximum lactate steady-state. Int J Sports Med 14:134–139

    CAS  PubMed  Google Scholar 

  16. Williams JR, Armstrong N (1991) Relationship of maximal lactate steady-state to performance at fixed blood lactate reference values in children. Ped Exerc Sci 3:333–341

    Google Scholar 

Download references

Acknowledgements

The author gratefully extends his gratitude to Mrs. R. M. Leithäuser for her careful review of this manuscript and stimulating discussion. Thanks are also extended to all subjects who participated in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ralph Beneke.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beneke, R. Methodological aspects of maximal lactate steady state—implications for performance testing. Eur J Appl Physiol 89, 95–99 (2003). https://doi.org/10.1007/s00421-002-0783-1

Download citation

Keywords

  • Exercise metabolism
  • Kinetics
  • Examination