Skip to main content

Advertisement

Log in

Self-collected urine sampling to study the kinetics of urinary toluene (and o-cresol) and define the best sampling time for biomonitoring

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Purpose

To study the excretion kinetics of urinary toluene, TOL-U, and o-cresol, o-C, following occupational exposure to toluene in order to define the best time for sample collection, to apply a non-invasive approach based on self-collected urine sampling.

Methods

Five rotogravure printing workers exposed to uncontrolled levels of toluene collected spot urine samples over three consecutive working days and the following day of rest. In each sample TOL-U and o-C were measured and kinetics of excretion evaluated.

Results

Toluene exposure ranged from 48.3 to 75.3 mg/m3; TOL-U and o-C ranged from 1.4 to 34.6 μg/L and from 0.013 to 1.012 mg/L. A time course trend was obtained: TOL-U and o-C increased during the shift and peaked at the end of exposure and up to 2 h later, respectively; afterwards they rapidly decreased following apparent first order kinetics. Considering TOL-U, the elimination half-life for the first fast phase was 79 (±35 standard error) min, and for the second slow phase was 1,320 (±1,162) min. For o-C the elimination half-life for the first fast phase was 231 (±48) min. Considering a toluene uptake of 86%, TOL-U and o-C excreted in urine were about 0.0067 and 0.18% of the up taken.

Conclusion

Our results support the use of end shift TOL-U as a short term biomarker of occupational exposure to toluene and show the feasibility of self-collected urine sampling to investigate the elimination kinetics of industrial toxics in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Conference of Governmental Industrial Hygienists (ACGIH) (2007) TLVs and BEIs based on the documentation of the threshold limit values for chemical substances and physical agents and biological indices. Cincinnati, USA

  • Brugnone F, Perbellini L, Gaffuri E, Apostoli P (1980) Biomonitoring of industrial solvent exposures in workers’ alveolar air. Int Arch Occup Environ Health 47:245–261. doi:10.1007/BF00381682

    Article  PubMed  CAS  Google Scholar 

  • Deutsch Forschungsgemeinschaft (DFG) (2007) List of MAK and BAT values 2007. Report No 40, Weinheim: DFG, WILEY-VCH

  • Ducos P, Berode M, Francin JM, Arnoux C, Lefèvre C (2008) Biological monitoring of exposure to solvents using the chemical itself in urine: application to toluene. Int Arch Occup Environ Health 81:273–284. doi:10.1007/s00420-007-0210-3

    Article  PubMed  CAS  Google Scholar 

  • Fustinoni S, Giampiccolo R, Pulvirenti S, Buratti M, Colombi A (1999) Headspace solid-phase microextraction for the determination of benzene, toluene, ethylbenzene and xylenes in urine. J Chromatogr B Analyt Technol Biomed Life Sci 723:105–115. doi:10.1016/S0378-4347(98)00515-5

    Article  CAS  Google Scholar 

  • Fustinoni S, Buratti M, Giampiccolo R, Brambilla G, Foà V, Colombi A (2000) Comparison between blood and urinary toluene as biomarkers of exposure to toluene. Int Arch Occup Environ Health 73:389–396. doi:10.1007/s004200000156

    Article  PubMed  CAS  Google Scholar 

  • Fustinoni S, Consonni D, Campo L, Buratti M, Colombi A, Pesatori AC, Bonzini M, Bertazzi PA, Foà V, Garte S, Farmer PB, Levy LS, Pala M, Valerio F, Fontana V, Desideri A, Merlo DF (2005a) Monitoring low benzene exposure: comparative evaluation of urinary biomarkers, influence of cigarette smoking and genetic polymorphisms. Cancer Epidemiol Biomarkers Prev 14:2237–2244. doi:10.1158/1055-9965.EPI-04-0798

    Article  PubMed  CAS  Google Scholar 

  • Fustinoni S, Mercadante R, Campo L, Scibetta L, Valla C, Foà V (2005b) Determination of urinary ortho- and meta-cresol in humans by headspace SPME gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 817:309–317. doi:10.1016/j.jchromb.2004.12.029

    Article  PubMed  CAS  Google Scholar 

  • Fustinoni S, Mercadante R, Campo L, Scibetta L, Valla C, Foà V (2007) Comparisons between TOL-U and urinary ortho- and meta-cresol in humans by headspace SPME gas chromatography/mass spectrometry. J Occup Environ Hyg 817:309–317

    Google Scholar 

  • Garrett ER (1994) The Bateman function revised: a critical reevaluation of the quantitative expressions to characterize concentrations in one compartment body model as a function of time with first-order invasion and first-order elimination. J Pharmacokinet Biopharm 22:103–128. doi:10.1007/BF02353538

    Article  PubMed  CAS  Google Scholar 

  • Ghittori S, Alessio A, Maestri L, Negri S, Sgroi M, Zandra P (2002) Schede informative per il monitoraggio biologico. G Ital Med Lav Ergon 24:133–137 [document in Italian]. http://www.gimle.fsm.it. Accessed 15 June 2008

    Google Scholar 

  • Hazardous Substance Data Bank. Toluene. http://toxnet.nlm.nih.gov. Accessed 15 June 2008

  • Ikeda M (1999) Solvents in urine as exposure markers. Toxicol Lett 108:99–106. doi:10.1016/S0378-4274(99)00078-8

    Article  PubMed  CAS  Google Scholar 

  • Imbriani M, Ghittori S (2005) Gases and organic solvents in urine as biomarkers of occupational exposure: a review. Int Arch Occup Environ Health 78:1–19. doi:10.1007/s00420-004-0544-z

    Article  PubMed  CAS  Google Scholar 

  • Imbriani M, Ghittori S, Pezzagno G, Capodaglio E (1986) Toluene and styrene in urine as biological exposure indices. Appl Ind Hyg 1:172–176

    CAS  Google Scholar 

  • Jakubowski M, Trzcinka-Ochocka M (2005) Biological monitoring of exposure: trends and key developments. J Occup Health 47:22–48. doi:10.1539/joh.47.22

    Article  PubMed  CAS  Google Scholar 

  • Janasik B, Jakubowski M, Jałowiecki P (2008) Excretion of unchanged volatile organic compounds (toluene, ethylbenzene, xylene and mesitylene) in urine as result of experimental human volunteer exposure. Int Arch Occup Environ Health 81:443–449. doi:10.1007/s00420-007-0233-9

    Article  PubMed  CAS  Google Scholar 

  • Japan Society for Occupational Health (2000) Recommendation of occupational exposure limits. J Occup Health 42:213–228. doi:10.1539/joh.42.213

    Article  Google Scholar 

  • Kawai T, Mizunuma K, Okada Y, Horiguchi S, Ikeda M (1996) Toluene itself as the best urinary marker of toluene exposure. Int Arch Occup Environ Health 68:289–297. doi:10.1007/BF00409413

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Ukai H, Maejima Y, Fukui Y, Ohashi F, Okamoto S, Takada S, Sakurai H, Ikeda M (2008) Evaluation of biomarkers of occupational exposure to toluene at low levels. Int Arch Occup Environ Health 81:253–262. doi:10.1007/s00420-007-0203-2

    Article  PubMed  CAS  Google Scholar 

  • Lin YS, Egeghy PP, Rappaport SM (2007) Relationships between levels of volatile organic compounds in air and blood from the general population. J Expo Sci Environ Epidemiol 18(4):421–429. doi:10.1038/sj.jes.7500635

    Article  PubMed  Google Scholar 

  • Löf A, Hjelm EW, Colmsjö A, Lundmark BO, Norström A, Sato A (1993) Toxicokinetics of toluene and urinary excretion of hippuric acid after human exposure to 2H8-toluene. Br J Ind Med 50:55–59

    Google Scholar 

  • Nise G (1992) Urinary excretion of o-cresol and hippuric acid after toluene exposure in rotogravure printing. Int Arch Occup Environ Health 63:377–381. doi:10.1007/BF00386931

    Article  PubMed  CAS  Google Scholar 

  • Pezzagno G, Imbriani M, Ghittori S, Capodaglio E (1985) Significance of the urinary excretion of toluene as indices of exposure. Med Lav 76:44–60 (article in Italian)

    PubMed  CAS  Google Scholar 

  • Pierce CH, Chen Y, Hurtle WR, Morgan MS (2004) Exponential modeling, washout curve reconstruction, and estimation of half-life of toluene and its metabolites. J Toxicol Environ Health A 67:1131–1158

    Article  PubMed  CAS  Google Scholar 

  • Pierce CH, Dills RL, Kalman DA, Morgan MS, Vicini P, Kalaman DA (1998) Biological monitoring of controlled toluene exposure. Int Arch Occup Environ Health 71:433–444. doi:10.1007/s004200050303

    Article  PubMed  CAS  Google Scholar 

  • Scientific Committee on Occupational Exposure Limits (SCOEL) (2001) Recommendation from Scientific Committee on Occupational Exposure Limits for Toluene SCOEL/SUM/18H, European Commission

  • Takeuchi A, Kawai T, Zhang Z-W, Miyama Y, Sakamoto K, Higashikawa K, Ikeda M (2002) Toluene, xylenes and xylene isomers in urine as biological indicators of low-level exposure to each solvent; a comparative study. Int Arch Occup Environ Health 75:387–393. doi:10.1007/s00420-002-0331-7

    Article  PubMed  CAS  Google Scholar 

  • Ukai H, Kawai T, Inoue O, Maejima Y, Fukui Y, Ohashi F, Okamoto S, Takada S, Sakurai H, Ikeda M (2007) Comparative evaluation of biomarkers of occupational exposure to toluene. Int Arch Occup Environ Health 81:81–93. doi:10.1007/s00420-007-0193-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to the health personnel of the rotogravure printing industry and, in particular, to P. Bergamo for helping in managing the field survey and to the subjects who volunteered for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Fustinoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fustinoni, S., Mercadante, R. & Campo, L. Self-collected urine sampling to study the kinetics of urinary toluene (and o-cresol) and define the best sampling time for biomonitoring. Int Arch Occup Environ Health 82, 703–713 (2009). https://doi.org/10.1007/s00420-008-0393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-008-0393-2

Keywords

Navigation