Skip to main content
Log in

Exposure study on chemosensory effects of ε-caprolactam in the low concentration range

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Objective

Aim of the study was to examine possible chemosensory effects of ε-caprolactam in the low concentration range relevant to indoor environmental conditions.

Methods

Twenty healthy subjects (10 male, 10 female) aged from 21 to 38 years were exposed for 6 h, respectively, to 0, 0.15, 0.5 and 5 mg/m3 ε-caprolactam vapours in a randomized and double-blind method. As a measure of trigeminal stimulation of the eye, blink frequency was video-recorded four times per day and evaluated by using a new semi-automatic, computer-assisted method compared to baseline recording and manual counting. Digital slit lamp photographs were taken at the same time to examine conjunctival hyperaemia. A standardized ophthalmologic grading scale was used to measure redness of the eyes objectively. Active anterior rhinomanometry compared nasal resistance before and after exposure. Subjective ratings of discomfort and mental orientation were assessed using the German version of the Swedish Performance Evaluation system (SPES). As a measure of personality traits, positive and negative affectivity was determined (PANAS).

Results

Six hour exposures to ε-caprolactam revealed no significant dose–response relationship concerning blink frequency, nasal resistance and redness of the bulbar conjunctiva. Subjective ratings of discomfort (sum scores) significantly increased only at the highest concentration of 5 mg/m3. However, the increase in discomfort was only moderate, ranging between “not at all” and “somewhat”. Significant increases of the subjective detection of malodour (subscore) already occurred at 0.15 mg/m3, showing no adaptation over time. Irritation of the eyes or upper airways was not reported.

Conclusions

Exposure to ε-caprolactam vapour did not elicit any acute health effects in a concentration range up to 0.5 mg/m3. Even at the highest concentration of 5 mg/m3, we could only find a slight increase in subjective symptoms, mainly due to an unincisive increase of perception of malodour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Abdulmunem M (1999) Relation between tear breakup time and spontaneous blink rate. Int Lens Clin 26:117–120

    Article  Google Scholar 

  • Arts JH, de Heer C, Woutersen RA (2006) Local effects in the respiratory tract: relevance of subjectively measured irritation for setting occupational exposure limits. Int Arch Occup Environ Healh 79(4):283–298

    Article  Google Scholar 

  • Carmen Acosta M, Gallar J, Belmonte C (1999) The influence of eye solutions on blink and ocular comfort at rest and during work at video display terminals. Exp Eye Res 68:663–669

    Article  Google Scholar 

  • Cometto-Muniz JE, Cain WS (1991) Influence of airborne contaminants on olfaction and the common chemical sense. In: Getchell TV, Doty RL, Bartoshuk LM, Snow JB (eds) Smell and taste in health and disease. Raven Press, New York, pp 765

    Google Scholar 

  • Dalton P (1999) Cognitive influences on health symptoms from acute chemical exposure. Health Psychol 18(6):579–590

    Article  PubMed  CAS  Google Scholar 

  • Dalton PH, Dilks DD, Banton MI (2000) Evaluation of odor and sensory irritation thresholds for methyl isobutyl ketone in humans. J AIHA 61(3):340–350

    CAS  Google Scholar 

  • Deutsche Forschungsgemeinschaft (DFG) (2006) List of MAK and BAT Values 2006. Report 42, pp 9 and 13. ©2006 Wiley-VCH Verlag GmbH&Co.KGaA, Weinheim. ISBN-10: 3527–315993

  • Doty RL, Cometto-Muniz JE, Jalowayski AA, Dalton P, Kendal-Reed M, Hodgson M (2004) Assessment of upper respiratory tract and ocular irritative effects of volatile chemicals in humans. Crit Rev Toxicol 34(2):85–142

    Article  PubMed  CAS  Google Scholar 

  • Dunn JD, Cometto-Muñiz JE, Cain WS (1982) Nasal reflexes: reduced sensitivity to CO2 irritation in cigarette smokers. J Appl Toxicol 2:176

    Article  CAS  Google Scholar 

  • Emmen HH, Muijser H, Arts JHE, Prinsen MK (2003) Human volunteer study with PGME: eye irritation during vapour exposure. Toxicol Lett 140–141:249–259

    Article  PubMed  CAS  Google Scholar 

  • Ferguson WS, Wheeler DD (1973) Caprolactam vapor exposures. Am Ind Hyg Assoc J 43(9):384–389

    Google Scholar 

  • Gamberale F (1989) Critical issues in the study of the acute effects of solvent exposure. Neurotoxicol Teratol 11(6):565–570

    Article  PubMed  CAS  Google Scholar 

  • Goldblatt MW, Farquharson ME, Benett G, Askew BM (1954) Epsilon-Caprolactam. Br J Ind Med 11(1):1–10

    PubMed  CAS  Google Scholar 

  • Greim H (2004) Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten. Senats-komission zur Prüfung gesundheitlicher Arbeitsstoffe. Wiley-VCH, Weinheim

    Google Scholar 

  • Gross P (1984) Biologic activity of epsilon-caprolactam. Crit Rev Toxicol 13(3):205–216

    Article  PubMed  CAS  Google Scholar 

  • Hempel–Jorgensen A, Kjaergaard SK, Molhave L (1998) Cytological changes and conjunctival hyperemia in relation to sensory eye irritation. Int Arch Occup Environ Health 71:225–235

    Article  Google Scholar 

  • Hohensee F (1951) Über die pharmakologische und physiologische Wirkung des Epsilon-Caprolactam. Faserforschung Textiltechnik 08:300–303

    Google Scholar 

  • Ihrig A, Hoffmann J, Triebig G (2005) Examination of the influence of personal traits and habituation on the reporting of complaints at experimental exposure to ammonia. Int Arch Occup Environ Health 79(4):332–338

    Article  PubMed  Google Scholar 

  • Iregren A, Gamberale F, Kjellberg A (1996) SPES: a psychological test system to diagnose environmental hazards. Swedish Performance Evaluation System. Neurotoxicol Teratol 18(4):485–491

    Article  PubMed  CAS  Google Scholar 

  • Karson CN (1988) Physiology of normal and abnormal blink. Adv Neurol 49:25–37

    PubMed  CAS  Google Scholar 

  • Kelman GR (1986) Effects of human exposure to atmospheric epsilon-caprolactam. Hum Toxicol 5(1):57–59

    Article  PubMed  CAS  Google Scholar 

  • Kiesswetter E, van Thriel C, Schäper M, Blaszkewicz M, Seeber A (2005) Eye blinks as an indicator for sensory irritation during constant and peak exposures to 2-ethylhexanol. Environ Toxicol Pharmacol 19(3):531–541

    Article  CAS  Google Scholar 

  • Kleno J, Wolkoff P (2004) Changes in eye blink frequency as a measure of trigeminal stimulation by exposure to limonene oxidation products, isoprene oxidation products and nitrate radicals. Int Arch Occup Environ Health 77(4):235–243

    Article  PubMed  CAS  Google Scholar 

  • Klimek L, Hundorf I, Delank KW, Hörmann K (2002) Assessment of rhinological parameters for evaluating the effects of airborne irritants to the nasal epithelium. Int Arch Occup Environ Health 75(5):291–297

    Article  PubMed  CAS  Google Scholar 

  • Krichevskaya IM. Gig. i Sanit. 1968 (1):22 (Article in Russian: cit. in Gross 1984.)

  • Monster AW, Chan HC, O’Connor D (1978) Long-term trends in human eye blink rate. Biotelemetry Pat Monit 5:206–222

    CAS  Google Scholar 

  • Naumann HH (1990) Nase, Nasennebenhöhlen und Nasenrachen. In: Differentialdiagnostik in der Hals- Nasen-, Ohrenheilkunde. Georg Thieme Verlag Stuttgart, New York, pp 176–230

  • Nojgaard JK, Christensen KB, Wolkoff P (2005) The effects on human eye blink frequency of exposure to limonene oxidation products and methacrolein. Toxicol Lett 156(2):241–251

    Article  PubMed  CAS  Google Scholar 

  • Norn MS (1992) Diagnosis of dry eye. In: Lemp MA, Marquardt R (eds) The dry eye—a comprehensive guide. Springer, Berlin, pp 134

    Google Scholar 

  • Paustenbach DJ, Gaffney SH (2005) The role of odor and irritation, as well as risk perception, in the setting of occupational exposure limits. Int Arch Occup Environ Health 79(4):339–342

    Article  PubMed  Google Scholar 

  • Reinhold RW, Hoffman GM, Bolte HF, Rinehart WE, Rusch GM, Parod RJ, Kayser M (1998) Subchronic inhalation toxicity study of caprolactam (with a 4-week recovery) in the rat via whole-body exposures. Toxicol Sci 44(2):197–205

    Article  PubMed  CAS  Google Scholar 

  • Seeber A, Bolt HM, Gelbke HP, Miksche L, Pawlik K, Rüdiger HW, Triebig G, Ziegler-Skylakakis (1997) Verhaltenstoxikologie und MAK-Grenzwertfestlegungen. Wiley-VCH, Weinheim

    Google Scholar 

  • Seeber A, van Thriel C, Haumann K, Kiesswetter E, Blaszkewicz M, Golka K (2002) Psychological reactions related to chemosensory irritation. Int Arch Occup Environ Health 75(5):314–325

    Article  PubMed  CAS  Google Scholar 

  • Shusterman DJ, Murphy MA, Balmes JR (2001) The influence of sex, allergic rhinitis, and test system on nasal sensitivity to airborne irritants: a pilot study. Environ Health Perspect 109(1):15–19

    Article  PubMed  CAS  Google Scholar 

  • Tsubota K, Hata S, Okusawa Y, Egami F, Ohtsuki T, Nakamori K (1996) Quantitative videographic analysis of blink in normal subjects and patients with dry eye. Arch Ophthalmol 114(6):715–720

    PubMed  CAS  Google Scholar 

  • Tuma SN, Orson F, Fossella FV, Waidhofer W (1981) Seizures and dermatitis after exposure to caprolactam. Arch Intern Med 141(11):1544–1545

    Article  PubMed  CAS  Google Scholar 

  • Van Thriel C, Triebig G, Bolt HM (2006) Editorial: evaluation of chemosensory effects due to occupational exposures. Int Arch Occup Environ Health 79(4):265–267

    Article  PubMed  Google Scholar 

  • Waddell WJ, Marlowe C, Friedman MA (1984) The distribution of [14C]Caprolactam in male, female and pregnant mice. Food Chem Toxicol 22(4):293–303

    Article  PubMed  CAS  Google Scholar 

  • Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: The PANAS scales. J Pers Soc Psychol 54:1061–1070

    Google Scholar 

  • Wolffsohn JS (2004) Incremental nature of anterior eye grading scales determined by objective image analysis. Br J Ophthalmol 88(11):1434–1438

    Article  PubMed  CAS  Google Scholar 

  • Wysocki CJ, Cowart BJ, Radil T (2003) Localizing inhaled stimuli: a normative study of nasal-trigeminal chemosensitivity. Percept Psychophys 65:115

    PubMed  Google Scholar 

  • Zwierzchowski Z, Kowalski S, Szendzikowski S, Slusarczyik-Zalobna (1967) Medycyna Pracy XVIII 4:357(Article in Russian; English abstract)

Download references

Acknowledgments

We would like to thank the International Bureau for the Standardization of Man-made Fibres (BIFSA) in Brussels, Belgium for the financial support of the study. There were no competing financial interests among the authors. Grateful thanks also to Dr. Sylvana Mueller for statistics and Thomas Krczal for the excellent performance of the chemical analyses. The authors gratefully acknowledge the volunteers for their participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Triebig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, A.E., Zimmer, H. & Triebig, G. Exposure study on chemosensory effects of ε-caprolactam in the low concentration range. Int Arch Occup Environ Health 81, 743–753 (2008). https://doi.org/10.1007/s00420-007-0264-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-007-0264-2

Keywords

Navigation