Skip to main content
Log in

A spheroidal compressible liquid inclusion perfectly bonded to an infinite transversely isotropic elastic matrix

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We study the three-dimensional problem of a spheroidal compressible liquid inclusion perfectly bonded to an infinite transversely isotropic elastic matrix subjected to a uniform axisymmetric stress field at infinity. The original boundary value problem is reduced to a set of three coupled linear algebraic equations. The internal uniform hydrostatic tension within the liquid inclusion and the elastic field of displacements and stresses in the matrix are then determined via the solution of this set of linear algebraic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. London A 241, 376–396 (1957)

    Article  MathSciNet  Google Scholar 

  2. Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. Roy. Soc. London A 252, 561–569 (1959)

    Article  MathSciNet  Google Scholar 

  3. Eshelby, J.D.: Elastic inclusions and inhomogeneities. Prog. Solid Mech. 2, 89–140 (1961)

    MathSciNet  Google Scholar 

  4. Chen, W.T.: Axisymmetric stress field around spheroidal inclusions and cavities in a transversely isotropic material. ASME J. Appl. Mech. 35, 770–773 (1968)

    Article  Google Scholar 

  5. Mura, T.: Micromechanics of defects in solids, 2nd, rev. ed. Martinus Nijhoff, Dordrecht, Netherlands (1987)

  6. Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, J.H.L., Song, B., Wang, Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)

    Article  Google Scholar 

  7. Eshelby, J.D.: Discussion: “Axisymmetric stress field around spheroidal inclusions and cavities in a transversely isotropic material” (Chen, W. T., 1968, ASME J. Appl. Mech., 35, pp. 770–773). ASME J. Appl. Mech. 36, 652 (1 page) (1969).

  8. Style, R.W., Wettlaufer, J.S., Dufresne, E.R.: Surface tension and the mechanics of liquid inclusions in compliant solids. Soft Matter 11(4), 672–679 (2015)

    Article  Google Scholar 

  9. Style, R.W., Boltyanskiy, R., Allen, B., Jensen, K.E., Foote, H.P., Wettlaufer, J.S., Dufresne, E.R.: Stiffening solids with liquid inclusions. Nat. Phys. 11(1), 82–87 (2015)

    Article  Google Scholar 

  10. Wu, J., Ru, C.Q., Zhang, L.: An elliptical liquid inclusion in an infinite elastic plane. Proc. Royal Soc. A 474(2215), 20170813 (2018)

    Article  MathSciNet  Google Scholar 

  11. Chen, X., Li, M.X., Yang, M., Liu, S.B., Genin, G.M., Xu, F., Lu, T.J.: The elastic fields of a compressible liquid inclusion. Extreme Mech. Lett. 22, 122–130 (2018)

    Article  Google Scholar 

  12. Krichen, S., Liu, L.P., Sharma, P.: Liquid inclusions in soft materials: capillary effect, mechanical stiffening and enhanced electromechanical response. J. Mech. Phys. Solids 127, 332–357 (2019)

    Article  MathSciNet  Google Scholar 

  13. Dai, M., Hua, J., Schiavone, P.: Compressible liquid/gas inclusion with high initial pressure in plane deformation: modified boundary conditions and related analytical solutions. Euro. J. Mech. A-Solids 82, 104000 (2020)

    Article  MathSciNet  Google Scholar 

  14. Dai, M., Schiavone, P.: Modified closed-form solutions for three-dimensional elastic deformations of a composite structure containing macro-scale spherical gas/liquid inclusions. Appl. Math. Modelling 97, 57–68 (2021)

    Article  MathSciNet  Google Scholar 

  15. Ti, F., Chen, X., Li, M.X., Sun, X.C., Liu, S.B., Lu, T.J.: Cylindrical compressible liquid inclusion with surface effects. J. Mech. Phys. Solids 161, 104813 (2022)

    Article  MathSciNet  Google Scholar 

  16. Ghosh, K., Lopez-Pamies, O.: Elastomers filled with liquid inclusions: theory, numerical implementation, and some basic results. J. Mech. Phys. Solids 166, 104930 (2022)

    Article  MathSciNet  Google Scholar 

  17. Ghosh, K., Lefevre, V., Lopez-Pamies, O.: The effective shear modulus of a random isotropic suspension of monodisperse liquid n-spheres: from the dilute limit to the percolation threshold. Soft Matter 19, 208–224 (2023)

    Article  Google Scholar 

  18. Ghosh, K., Lefevre, V., Lopez-Pamies, O.: Homogenization of elastomers filled with liquid inclusions: the small-deformation limit. J. Elasticity 154, 235–253 (2023)

    Article  MathSciNet  Google Scholar 

  19. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Eshelby formalism for nano-inhomogeneities. Proc. Roy. Soc. A 461(2062), 3335–3353 (2005)

    Article  MathSciNet  Google Scholar 

  20. Wang, X., Schiavone, P.: Stress relaxation around an anisotropic elastic elliptical inhomogeneity with interface slip and diffusion (Submitted).

Download references

Acknowledgements

The authors are grateful to two reviewers for their constructive comments and suggestions. This work is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (Grant No: RGPIN-2023-03227 Schiavo).

Author information

Authors and Affiliations

Authors

Contributions

X.W. conceived the idea for the paper and prepared the first draft together with the figures. X.W. and P.S. performed the formal analysis and methodology. Both authors reviewed the final manuscript.

Corresponding authors

Correspondence to Xu Wang or Peter Schiavone.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

According to Chen [4], the displacements and stresses in the transversely isotropic elastic matrix are given explicitly by

$$ \begin{aligned} u_{r} & = v_{r} r + A_{1} r\psi_{2} (q_{1} ) + A_{2} r\psi_{2} (q_{2} ), \\ u_{z} & = v_{z} z + \frac{{A_{1} k_{1} }}{{\sqrt {v_{1} } }}z_{1} \psi_{1} (q_{1} ) + \frac{{A_{2} k_{2} }}{{\sqrt {v_{2} } }}z_{2} \psi_{1} (q_{2} ), \\ \sigma_{zz} & = p_{z} + A_{1} C_{44} (1 + k_{1} )\left[ {\psi_{1} (q_{1} ) + z_{1} \psi^{\prime}_{1} (q_{1} )\frac{{\partial q_{1} }}{{\partial z_{1} }}} \right] + A_{2} C_{44} (1 + k_{2} )\left[ {\psi_{1} (q_{2} ) + z_{2} \psi^{\prime}_{1} (q_{2} )\frac{{\partial q_{2} }}{{\partial z_{2} }}} \right], \\ \sigma_{zr} & = \frac{{A_{1} C_{44} (1 + k_{1} )}}{{\sqrt {v_{1} } }}z_{1} \psi^{\prime}_{1} (q_{1} )\frac{{\partial q_{1} }}{\partial r} + \frac{{A_{2} C_{44} (1 + k_{2} )}}{{\sqrt {v_{2} } }}z_{2} \psi^{\prime}_{1} (q_{2} )\frac{{\partial q_{2} }}{\partial r}, \\ \sigma_{rr} & = p_{r} + \frac{{A_{1} C_{44} (1 + k_{1} )}}{{v_{1} }}\left[ {2\psi_{2} (q_{1} ) + r\psi^{\prime}_{2} (q_{1} )\frac{{\partial q_{1} }}{\partial r}} \right] + \frac{{A_{2} C_{44} (1 + k_{2} )}}{{v_{2} }}\left[ {2\psi_{2} (q_{2} ) + r\psi^{\prime}_{2} (q_{2} )\frac{{\partial q_{2} }}{\partial r}} \right] \\ &\quad - (C_{11} - C_{12} )\left[ {A_{1} \psi_{2} (q_{1} ) + A_{2} \psi_{2} (q_{2} )} \right], \\ \sigma_{\theta \theta } & = p_{r} + \frac{{A_{1} C_{44} (1 + k_{1} )}}{{v_{1} }}\left[ {2\psi_{2} (q_{1} ) + r\psi^{\prime}_{2} (q_{1} )\frac{{\partial q_{1} }}{\partial r}} \right] + \frac{{A_{2} C_{44} (1 + k_{2} )}}{{v_{2} }}\left[ {2\psi_{2} (q_{2} ) + r\psi^{\prime}_{2} (q_{2} )\frac{{\partial q_{2} }}{\partial r}} \right] \\ & \quad - (C_{11} - C_{12} )\left\{ {A_{1} \left[ {\psi_{2} (q_{1} ) + r\psi^{\prime}_{2} (q_{1} )\frac{{\partial q_{1} }}{\partial r}} \right] + A_{2} \left[ {\psi_{2} (q_{2} ) + r\psi^{\prime}_{2} (q_{2} )\frac{{\partial q_{2} }}{\partial r}} \right]} \right\}, \\ \end{aligned} $$
(27)

where

$$ z_{\alpha } = \frac{z}{{\sqrt {v_{\alpha } } }} \, (\alpha = 1, \, 2), $$
(28)

and the two functions \(q_{\alpha } (r, \, z_{\alpha } ) \, (\alpha = 1, \, 2)\) are defined by

$$ \frac{{z_{\alpha }^{2} }}{{q_{\alpha }^{2} }} + \frac{{r^{2} }}{{q_{\alpha }^{2} - 1}} = c_{\alpha }^{2} \, (\alpha = 1, \, 2), $$
(29)

with

$$ c_{\alpha }^{2} = \frac{{a^{2} }}{{v_{\alpha } }} - b^{2} . $$
(30)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Schiavone, P. A spheroidal compressible liquid inclusion perfectly bonded to an infinite transversely isotropic elastic matrix. Arch Appl Mech (2024). https://doi.org/10.1007/s00419-024-02610-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00419-024-02610-9

Keywords

Navigation