Skip to main content
Log in

Analysis of an interface crack with multiple electric boundary conditions on its faces in a one-dimensional hexagonal quasicrystal bimaterial

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

An interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric effect under anti-plane shear and in-plane electric loadings is considered. Mixed boundary conditions at the crack faces are studied. Using special representations of field variables via sectionally analytic vector-functions, a homogeneous combined Dirichlet–Riemann boundary value problem and a Hilbert problem are formulated. Exact analytical solutions of both these problems are obtained, and analytical expressions for the phonon and phason stresses and the electric field as well as for the derivative jumps of the phonon and phason displacements and also the electrical displacement jump along the bimaterial interface are derived. The field intensity factors are determined as well. The dependencies of the mentioned values on the magnitude and direction of the external electric loading and different ratios of electrically conductive and electrically permeable crack face zone lengths are demonstrated in graph and table forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  CAS  ADS  Google Scholar 

  2. Elina, H.S.: Microstructure, fabrication and properties of quasicrystalline Al-Cu-Fe alloys: a review. J. Alloy. Compd. 363, 154–178 (2004)

    Article  Google Scholar 

  3. Bak, P.: Phenomenological theory of icosahedral incommensurate (‘quasiperiodic’) order in Mn–Al alloys. Phys. Rev. Lett. 54, 1517–1519 (1985)

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Steurer, W., Deloudi, S.: Crystallography of Quasicrystals: Concepts, Methods and Structures. Springer, Berlin, Heidelberg (2009)

  5. Ding, D.H., Yang, W.G., Hu, C.Z., Wang, R.H.: Generalized elasticity theory of quasicrystals. Phys. Rev. B 48, 7003–7010 (1993)

    Article  CAS  ADS  Google Scholar 

  6. Hu, C.Z., Wang, R.H., Ding, D.H.: Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys. 63, 1–39 (2000)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  7. Fan, T.Y., Mai, Y.W.: Elasticity theory, fracture mechanics and some relevant thermal properties of quasi-crystalline materials. Appl. Mech. Rev. 57, 325–343 (2004)

    Article  ADS  Google Scholar 

  8. Fujiwara, T., Ishii, Y. (eds.): Quasicrystals. Handbook of Metal Physics. Elsevier, Amsterdam (2008)

    Google Scholar 

  9. Suck, J.-B., Schreiber, M., Haussler, P. (eds.): Quasicrystals: An Introduction to Structure. Physical Properties and Applications. Springer, Berlin (2010)

    Google Scholar 

  10. Fan, T.Y.: Mathematical Theory of Elasticity of Quasicrystals and its Applications. Springer, Beijing (2011)

    Book  Google Scholar 

  11. Hu, C.Z., Wang, R.H., Ding, D.H., Yang, W.G.: Piezoelectric effects in quasicrystals. Phys. Rev. B 56, 2463–2468 (1997)

    Article  CAS  ADS  Google Scholar 

  12. Altay, G., Dömeci, M.C.: On the fundamental equations of piezoelasticity of quasicrystal media. Int. J. Solids Struct. 49, 3255–3262 (2012)

    Article  Google Scholar 

  13. Li, C.-L., Liu, Y.-Y.: The physical property tensors of one-dimensional quasicrystals. Chin. Phys. 13, 924–931 (2004)

    Article  Google Scholar 

  14. Rao, K.R.M., Rao, P.H., Chaitanya, B.S.K.: Piezoelectricity in quasicrystals: a group-theoretical study. Pramana J. Phys. 68, 481–487 (2007)

    Article  CAS  ADS  Google Scholar 

  15. Zhang, L., Wu, D., Xu, W., Yang, L., Ricoeur, A., Wang, Z., Gao, Y.: Green’s functions of one-dimensional quasicrystal bi-material with piezoelectric effect. Phys. Lett. A 380, 3222–3228 (2016)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  16. Li, X.Y., Li, P.D., Wu, T.H., Shi, M.X., Zhu, Z.W.: Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys. Lett. A 378, 826–834 (2014)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  17. Li, X.Y., Wang, T., Zheng, R.F., Kang, G.Z.: Fundamental thermo-electro-elastic solutions for 1D hexagonal QC. Z. Angew. Math. Mech. 95, 457–468 (2015)

    Article  MathSciNet  Google Scholar 

  18. Zhang, L.L., Zhang, Y.M., Gao, Y.: General solutions of plane elasticity of one-dimensional orthorhombic quasicrystals with piezoelectric effect. Phys. Lett. A 378, 2768–2776 (2014)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  19. Xu, W.S., Wu, D., Gao, Y.: Fundamental elastic field in an infinite plane of two dimensional piezoelectric quasicrystal subjected to multi-physics loads. Appl. Math. Model. 52, 186–196 (2017)

    Article  MathSciNet  Google Scholar 

  20. Guo, J.H., Pan, E.N.: Three-phase cylinder model of one-dimensional hexagonal piezoelectric quasi-crystal composites. J. Appl. Mech. 83, 081007–081010 (2016)

    Article  ADS  Google Scholar 

  21. Fan, C.Y., Li, Y., Xu, G.T., Zhao, M.H.: Fundamental solutions and analysis of three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals. Mech. Res. Commun. 74, 39–44 (2016)

    Article  Google Scholar 

  22. Zhou, Y.B., Li, X.F.: Fracture analysis of an infinite 1D hexagonal piezoelectric quasicrystal plate with a penny-shaped dielectric crack. Eur. J. Mech. A. Solids 76, 224–234 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  23. Yu, J., Guo, J.H., Pan, E., Xing, Y.M.: General solutions of plane problem in one-dimensional quasicrystal piezoelectric materials and its application on fracture mechanics. Appl. Math. Mech. Engl. Ed. 36, 793–814 (2015)

    Article  MathSciNet  Google Scholar 

  24. Zhou, Y.B., Li, X.F.: Two collinear mode-III cracks in one-dimensional hexagonal piezoelectric quasicrystal strip. Eng. Fract. Mech. 189, 133–147 (2018)

    Article  Google Scholar 

  25. Zhou, Y.B., Li, X.F.: Exact solution of two collinear cracks normal to the boundaries of a 1D layered hexagonal piezoelectric quasicrystal. Philos. Mag. 98, 1780–1798 (2018)

    Article  CAS  ADS  Google Scholar 

  26. Yang, J., Li, X.: The anti-plane shear problem of two symmetric cracks originating from an elliptical hole in 1D hexagonal piezoelectric QCs. Adv. Mater. Res. 936, 127–135 (2014)

    Article  Google Scholar 

  27. Yang, J., Li, X.: Analytic solutions of problem about a circular hole with a straight crack in one-dimensional hexagonal quasicrystals with piezoelectric effects. Theor. Appl. Fract. Mech. 82, 17–24 (2016)

    Article  Google Scholar 

  28. Yang, J., Zhou, Y.T., Ma, H.L., Ding, S.H., Li, X.: The fracture behavior of two asymmetrical limited permeable cracks emanating from an elliptical hole in one-dimensional hexagonal quasicrystals with piezoelectric effect. Int. J. Solids Struct. 108, 175–185 (2017)

    Article  Google Scholar 

  29. Zhou, Y.B., Li, X.F.: A Yoffe-type moving crack in one-dimensional hexagonal piezoelectric quasicrystals. Appl. Math. Model. 65, 148–163 (2019)

    Article  MathSciNet  Google Scholar 

  30. Tupholme, G.E.: One-dimensional piezoelectric quasicrystals with an embedded moving, non-uniformly loaded shear crack. Acta Mech. 228, 547–560 (2017)

    Article  MathSciNet  Google Scholar 

  31. Tupholme, G.E.: A non-uniformly loaded anti-plane crack embedded in a half-space of a one-dimensional piezoelectric quasicrystal. Meccanica 53, 973–983 (2018)

    Article  MathSciNet  Google Scholar 

  32. Zhao, M.H., Dang, H.Y., Fan, C.Y., Chen, Z.T.: Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material. Part 1: Theoretical solution. Eng. Fract. Mech. 179, 59–78 (2017)

    Article  Google Scholar 

  33. Dang, H.Y., Zhao, M.H., Fan, C.Y., Chen, Z.T.: Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material. Part 2: Numerical method. Eng. Fract. Mech. 180, 268–281 (2017)

    Article  Google Scholar 

  34. Hu, K.Q., Jin, H., Yang, Z., Chen, X.: Interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric effect. Acta Mech. 230, 2455–2474 (2019)

    Article  MathSciNet  Google Scholar 

  35. Loboda, V., Komarov, O., Bilyi, D., Lapusta, Y.: An analytical approach to the analysis of an electrically permeable interface crack in a 1-D piezoelectric quasicrystal. Acta Mech. 231, 3419–3433 (2020)

    Article  MathSciNet  Google Scholar 

  36. Hu, K.Q., Gao, C., Zhong, Z., Chen, Z.: Interaction of collinear interface cracks between dissimilar one-dimensional hexagonal piezoelectric quasicrystals. Z. Angew. Math. Mech. 101, e202000360 (2021)

    Article  MathSciNet  Google Scholar 

  37. Beom, H.G., Atluri, S.N.: Conducting cracks in dissimilar piezoelectric media. Int. J. Fract. 118, 285–301 (2002)

    Article  Google Scholar 

  38. Loboda, V., Sheveleva, A., Lapusta, Y.: An electrically conducting interface crack with a contact zone in a piezoelectric bimaterial. Int. J. Solids Struct. 51, 63–73 (2014)

    Article  Google Scholar 

  39. Onopriienko, O., Loboda, V., Sheveleva, A., Lapusta, Y.: Bond zone model for a conductive crack at the interface of piezoelectric materials under anti-plane mechanical and in-plane electric loadings. Z. Angew. Math. Mech. 99, e201800230 (2019)

    Article  MathSciNet  Google Scholar 

  40. Nakhmein, E.L., Nuller, B.M.: The pressure of a system of stamps on an elastic half-plane under general conditions of contact adhesion and slip. J. Appl. Math. Mech. 52, 223–230 (1988)

    Article  MathSciNet  Google Scholar 

  41. Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y.: An electrically permeable crack between two different piezoelectric materials. In: Wriggers, P., Eberhard, P. (eds.) Fracture Mechanics of Piezoelectric Solids with Interface Cracks. Lecture Notes in Applied and Computational Mechanics, vol. 83, pp. 59–95. Springer, Berlin (2017)

    Chapter  Google Scholar 

  42. Muskhelishvili, N.I.: Some Basic Problems in the Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)

    Google Scholar 

  43. Muskhelisvili, N.I.: Singular integral equations. Noordhoff, Groningen (1953)

    Google Scholar 

  44. Loboda, V., Sheveleva, A., Komarov, O., Lapusta, Y.: An interface crack with mixed electrical conditions at it faces in 1D quasicrystal with piezoelectric effect. Mech. Adv. Mater. Struct. 29, 3334–3344 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The Author V. Govorukha would like to express his gratitude for the support of the Alexander von Humboldt Foundation through a Digital Cooperation Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

V.G. and M.K. wrote the main manuscript text and V.G. prepared figures 1-6. All authors reviewed the manuscript

Corresponding author

Correspondence to V. Govorukha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Consider a bimaterial compound, which consists of two piezoelectric quasicrystalline half-spaces \(x_{2} > 0\) and \(x_{2} < 0\) of different material properties. We assume, that the stresses of the phonon and phason fields, and the tangential component of the electric field are continuous across the whole bimaterial interface. This means that the boundary conditions in the plane \(x_{2} = 0\) are

$$ \left\langle {\sigma_{32} (x_{1} )} \right\rangle = 0,\quad \left\langle {H_{32} (x_{1} )} \right\rangle = 0,\quad \left\langle {E_{1} (x_{1} )} \right\rangle = 0,\quad {\text{for}}\;x_{1} \in ( - \infty ,\infty ). $$
(A1)

To construct the representations, which satisfy the interface conditions, we use Eqs. (10) and (11) for the upper (\(m = 1\)) and lower \((m = 2)\) half-spaces, which can be written in the form

$$ {\mathbf{v}}^{{(m)}} = {\mathbf{M}}^{{(m)}} {\mathbf{f}}^{{\prime (m)}} (z) + {\boldsymbol{\bar{M}}}^{{(m)}} {\boldsymbol{\bar{f}}}^{{\prime (m)}} (\bar{z}) $$
(A2)
$$ {\mathbf{p}}^{{(m)}} = {\mathbf{N}}^{{(m)}} {\mathbf{f}}^{{\prime (m)}} (z) + {\boldsymbol{\bar{N}}}^{{(m)}} {\boldsymbol{\bar{f}}}^{{\prime (m)}} (\bar{z}), $$
(A3)

where the arbitrary vector-functions \( {\mathbf{f}}^{{(1)}} (z) \) and \( {\mathbf{f}}^{{(2)}} (z) \) are analytic in the upper and the lower half-spaces, respectively.

According to the interface conditions (A1) and the relations (A3), we get

$$ {\mathbf{N}}^{{(1)}} {\mathbf{f}}^{{\prime (1)}} (x_{1} + i0) - {\boldsymbol{\bar{N}}}^{{(2)}} {\boldsymbol{\bar{f}}}^{{\prime (2)}} = N^{{(2)}} f^{{\prime (2)}} (x_{1} - i0) - \bar{N}^{{(1)}} \bar{f}^{{\prime (1)}} (x_{1} - i0)\;{\text{for}}\;x_{1} \in ( - \infty ,\infty ) $$
(A4)

The left-hand side of equation (A4) is the boundary value of a vector-function being analytic in the domain \(x_{2} > 0\), and the right-hand side of this equation is the boundary value of another vector-function being analytic in the domain \(x_{2} < 0\). Hence, both vector-functions can be analytically continued into the whole complex plane, i.e., they are equal to an arbitrary vector-function, defined as

$$ {\mathbf{J}}(z) = \left\{ {\begin{array}{*{20}c} {{\mathbf{N}}^{{(1)}} {\mathbf{f}}^{{\prime (1)}} (z) - {\bar{\mathbf{N}}}^{{(2)}} {\bar{{\bf f}}}^{{\prime (2)}} (z){\text{ for }}x_{2} > 0} \\ {{\mathbf{N}}^{{(2)}} {\mathbf{f}}^{{\prime (2)}} (z) - {\bar{\mathbf{N}}}^{{(1)}} {\bar{\mathbf{f}}}^{{\prime (1)}} (z){\text{ for }}x_{2} < 0} \\ \end{array} } \right. , $$
(A5)

which is analytic in the whole complex plane, including points along all bimaterial interface.

Taking into account that the phonon and phason stresses and the electric field are bonded at infinity, it follows from equation (A3) that \( {\mathbf{J}}(\infty ) = {\mathbf{J}}^{\infty } \), where \( {\mathbf{J}}^{\infty } \) is a constant vector. But according to Liouville’s theorem, this means that \( {\mathbf{J}}(z) = {\mathbf{J}}^{\infty } \) holds true in the whole complex plane. Thus from equation (A5) it follows

$$ \begin{aligned} & {{\bar{\bf f}}}^{{\prime (2)}} (z) = \left( {\overline{N}^{(2)} } \right)^{ - 1} N^{(1)} {\mathbf{f}}^{{\prime (1)}} (z) - \left( {\overline{N}^{(2)} } \right)^{ - 1} J^{\infty } \;{\text{for}}\;x_{2} > 0, \\ & {\mathbf{f}}^{{{\prime }(2)}} (z) = \left( {N^{(2)} } \right)^{ - 1} \overline{N}^{(1)} {\boldsymbol{\bar{f}}}^{{{\prime }(1)}} (z) - \left( {N^{(2)} } \right)^{ - 1} J^{\infty } \;{\text{for}}\;x_{2} < 0. \\ \end{aligned} $$
(A6)

Since \(f^{\prime (1)} (z)\) and \(f^{\prime (2)} (z)\) are arbitrary functions, one can set \(J^{\infty } = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 \\ \end{array} } \right]^{T}\), and equations (A6) get the form

$$ \begin{aligned} & {{\bar{\bf f}}}^{{\prime (2)}} (z) = \left( {\overline{N}^{(2)} } \right)^{ - 1} N^{(1)} {\mathbf{f}}^{{\prime (1)}} (z)\;{\text{for}}\;x_{2} > 0, \\ & {\mathbf{f}}^{{\prime (2)}} (z) = \left( {N^{(2)} } \right)^{ - 1} \overline{N}^{(1)} {\bar{\mathbf{f}}}^{{\prime (1)}} (z)\;{\text{for}}\;x_{2} < 0. \\ \end{aligned} $$
(A7)

Consider further the expressions

$$ \left\langle {v(x_{1} )} \right\rangle = v^{(1)} (x_{1} + i0) - v^{(2)} (x_{1} - i0) $$

for the derivatives of the jumps of phonon and phason displacements and electrical displacement jump over the bimaterial interface, which, in view of (A2) and (A7), takes the form

$$ \left\langle {v(x_{1} )} \right\rangle = {\mathbf{D}}{\mathbf{f}}^{{\prime (1)}} (x_{1} ) + {\bar{\mathbf{D}}}{\bar{\mathbf{f}}}^{{\prime (1)}} , $$

where \( {\mathbf{D}} = {\mathbf{M}}^{{(1)}} - {\boldsymbol{\bar{M}}}^{{(2)}} \left( {{\boldsymbol{\bar{N}}}^{{(2)}} } \right)^{{ - 1}} {\mathbf{N}}^{{(1)}} .\)

Furthermore, we assume that the part \(L\) of the bimaterial interface is mechanically and electrically bounded, i.e., the boundary conditions at this part of the bimaterial interface are or

$$ \left\langle {v(x_{1} )} \right\rangle = 0\;{\text{for}}\;x_{1} \in L $$
$$ {\mathbf{D}} = {\mathbf{M}}^{{(1)}} (x_{1}) = - \bar{\mathbf{D}}\bar{\mathbf{f}}^{{\prime (1)}} (x_{1} )\;{\text{for}}\;x_{1} \in L. $$
(A8)

Continuity of the phonon and phason displacements and the electrical displacement across the bonded bimaterial interface, as inferred from (A8), implies that an arbitrary vector-function defined as

$$ {\mathbf{W}}(z) = \left\{ {\begin{array}{*{20}c} {{\mathbf{D}}{\mathbf{f}}^{{\prime (1)}} (z){\text{ for }}x_{2} > 0} \\ { - {\bar{\mathbf{D}}}{\bar{\mathbf{f}}}^{{\prime (1)}} (z){\text{ for }}x_{2} < 0} \\ \end{array} } \right. $$

is analytic in the whole complex plane cut along \(( - \infty ,\infty )\backslash L\). Then, the field variables at the bimaterial interface can be expressed via the boundary values of the function \( {\mathbf{W}}{\text{(z)}} \) in such a way that

$$ \left\langle {v(x_{1} )} \right\rangle = {\mathbf{W}}^{ + } (x_{1} ) - {\mathbf{W}}^{ - } (x_{1} ), $$
(A9)
$$ {\mathbf{p}}(x_{1} ,0) = {\mathbf{GW}}^{ + } (x_{1} ) - {\boldsymbol{\bar{G}W}}^{ - } (x_{1} ) , $$
(A10)

where \( {\mathbf{G}} = {\mathbf{N}}^{{(1)}} \left( {\mathbf{D}} \right)^{{ - 1}} \) and the superscripts ‘ + ’ and ‘−‘ indicate the limit values at the bimaterial interface taken from the upper and the lower half-spaces, respectively.

Equations (A9) and (A10) can be used for the analysis of a bimaterial compound, which consists of dissimilar one-dimensional hexagonal piezoelectric QCs with cracks at their bimaterial interface.

Appendix B

The general solution of the homogeneous combined Dirichlet–Riemann boundary value problem (28) and (29) can be presented in the form [41]

$$ \Phi_{1} (z) = X(z)\left[ {P(z) + iY(z)Q(z)} \right], $$
(B1)

where

$$ X(z) = \frac{{e^{i\phi (z)} }}{{(z - d)\sqrt {(z - a_{1} )(z - a_{2} )} }},\;Y(z) = \sqrt {\frac{{(z - a_{1} )(z - a_{2} )}}{{(z - b_{1} )(z - b_{2} )}}} , $$
$$ \phi (z) = - Z(z)\left( {\varepsilon_{1} \int\limits_{{a_{1} }}^{{a_{2} }} {\frac{{{\text{d}}t}}{{Z^{ + } (t)(t - z)}} \, + \, i\int\limits_{{b_{1} }}^{{a_{1} }} {\frac{{h_{1} (t){\text{d}}t}}{{Z^{ + } (t)(t - z)}} + i\int\limits_{{a_{2} }}^{{b_{2} }} {\frac{{h_{2} (t){\text{d}}t}}{{Z^{ + } (t)(t - z)}}} } } } \right),\;\varepsilon_{1} = \frac{{\ln \gamma_{1} }}{2\pi }, $$
$$ Z(z) = \sqrt {(z - a_{1} )(z - a_{2} )(z - b_{1} )(z - b_{2} )} ,\;h_{1} (x_{1} ) = n^{*} ,\;h_{2} (x_{1} ) = \left\{ {\begin{array}{*{20}c} {1, \, x_{1} \in (a_{2} ,d)} \\ {0, \, x_{1} \in (d,b_{2} )} \\ \end{array} } \right., $$

\(n^{*}\) is an integer, and \(d \in (a_{2} , \, b_{2} )\) is an unknown pole of the function \(X(z)\).

The function \(\varphi (z)\) can be represented via elliptic integrals as

$$ \phi (z) = \frac{ - 2}{{\sqrt {(b_{2} - a_{1} )(a_{2} - b_{1} )} }}\left\{ {\varepsilon_{1} \sqrt {\frac{{(z - a_{2} )(z - b_{2} )}}{{(z - a_{1} )(z - b_{1} )}}} \varphi_{1} (z)} \right. + $$
$$ \left. { + n^{*} \sqrt {\frac{{(z - a_{1} )(z - a_{2} )}}{{(z - b_{1} )(z - b_{2} )}}} \varphi_{2} (z) - \sqrt {\frac{{(z - b_{1} )(z - b_{2} )}}{{(z - a_{1} )(z - a_{2} )}}} \varphi_{3} (z)} \right\}, $$

where

$$ \phi_{1} (z) = (a_{1} - b_{1} )\Pi (p_{1} ,q) + (z - a_{1} )K(q),\;p_{1} = p_{1}^{*} \frac{{z - b_{1} }}{{z - a_{1} }},\;p_{1}^{*} = \frac{{a_{2} - a_{1} }}{{a_{2} - b_{1} }}, $$
$$ \phi_{2} (z) = (b_{1} - b_{2} )\Pi (p_{2} ,r) + (z - b_{1} )K(r),\;p_{2} = p_{2}^{*} \frac{{z - b_{2} }}{{z - b_{1} }},\;p_{2}^{*} = \frac{{b_{1} - a_{1} }}{{b_{2} - a_{1} }}, $$
$$ \phi_{3} (z) = (a_{2} - a_{1} )\Pi (\mu ,p_{3} ,r) + (z - a_{2} )F(\mu ,r),\;p_{3} = p_{3}^{*} \frac{{z - a_{1} }}{{z - a_{2} }},\;p_{3}^{*} = \frac{{b_{2} - a_{2} }}{{b_{2} - a_{1} }}, $$

\(q = \sqrt {\frac{{(a_{2} - a_{1} )(b_{2} - b_{1} )}}{{(b_{2} - a_{1} )(a_{2} - b_{1} )}}} ,\;r = \sqrt {\frac{{(b_{2} - a_{2} )(a_{1} - b_{1} )}}{{(b_{2} - a_{1} )(a_{2} - b_{1} )}}} ,\;\mu = \arcsin \sqrt {\frac{{(b_{2} - a_{1} )(d - a_{2} )}}{{(b_{2} - a_{2} )(d - a_{1} )}}} ,\) Here \(F(\mu ,r)\) and \(\Pi (\mu ,p,r)\) are incomplete elliptic integrals of the first and third kind, while \(K(r)\) and \(\Pi (p,r)\) are complete elliptic integrals of the first and third kind.

The expansion of the function \(\varphi (z)\) at infinity has the form

$$ \left. {\varphi (z)} \right|_{z \to \infty } = A_{1} z + \left( {A_{2} + \xi_{1} A_{1} } \right) + \left( {A_{3} + \xi_{1} A_{2} + \xi_{2} A_{1} } \right)z^{ - 1} + O\left( {z^{ - 2} } \right), $$

where

$$ A_{j} = \varepsilon_{1} \int\limits_{{a_{1} }}^{{a_{2} }} {\frac{{t^{j - 1} {\text{d}}t}}{Z(t)} \, + \, i\int\limits_{{b_{1} }}^{{a_{1} }} {\frac{{t^{j - 1} h_{1} (t){\text{d}}t}}{{Z^{ + } (t)}} \, + \, i\int\limits_{{a_{{2}} }}^{{b_{{2}} }} {\frac{{t^{j - 1} h_{2} (t){\text{d}}t}}{{Z^{ + } (t)}}} } } ,\;j = 1,2,3. $$

The integer \(n^{*}\) and the pole \(d\) can be found from the condition of finite values at infinity of the function \(\varphi (z)\) as

$$ - \varepsilon_{1} \frac{K(q)}{{K(r)}} < n^{*} < 1 - \varepsilon_{1} \frac{K(q)}{{K(r)}} $$

\(d = \frac{{a_{1} \left( {b_{2} - a_{2} } \right)sn^{2} \left( {\omega , \, r} \right) - a_{2} \left( {b_{2} - a_{1} } \right)}}{{\left( {b_{2} - a_{2} } \right)sn^{2} \left( {\omega , \, r} \right) - \left( {b_{2} - a_{1} } \right)}}\)

where \(sn\left( {\omega , \, r} \right)\) is the Jacobi elliptic function and \(\omega = \varepsilon_{1} K(q) + n^{*} K(r)\).

The polynomials \(P(z)\) and \(Q(z)\), appearing in the solution (B1), have the form

$$ P(z) = C_{0} + C_{1} z + C_{2} z^{2} ,\;Q(z) = D_{0} + D_{1} z + D_{2} z^{2} , $$

where the coefficients

$$ C_{0} = - C_{1} \left( {d - \frac{\chi }{{\chi^{*} }}} \right) - {\text{d}}C_{2} \left( {d - \frac{2\chi }{{\chi^{*} }}} \right) - \frac{{\chi^{2} }}{{\chi^{*} }}\left( {D_{1} + 2{\text{d}}D_{2} } \right), $$
$$ D_{0} = \frac{1}{{\chi^{*} }}\left( {C_{1} + 2{\text{d}}C_{2} } \right) - D_{1} \left( {d + \frac{\chi }{{\chi^{*} }}} \right) - {\text{d}}D_{2} \left( {d + \frac{2\chi }{{\chi^{*} }}} \right), $$
$$ C_{1} = \alpha_{1} D_{2} - \nu_{1} C_{2} , $$
$$ D_{1} = - \left( {\nu_{1} + \eta_{1} } \right)D_{2} - \alpha_{1} C_{2} , $$
$$ C_{2} = \frac{{h_{13} E_{1}^{\infty } }}{{1 + \gamma_{1} }}\cos \alpha_{0} + \frac{{ - h_{11} \sigma_{32}^{\infty } - H_{32}^{\infty } }}{{1 + \gamma_{1} }}\sin \alpha_{0} , $$
$$ D_{2} = \frac{{ - h_{11} \sigma_{32}^{\infty } - H_{32}^{\infty } }}{{1 + \gamma_{1} }}\cos \alpha_{0} - \frac{{h_{13} E_{1}^{\infty } }}{{1 + \gamma_{1} }}\sin \alpha_{0} $$

are determined by the condition at infinity (31) for the function \(\Phi_{1} (z)\) as well as the condition of the phonon and phason displacement uniqueness and the absence of an electric charge in the crack region. In the above formulas

$$ \chi = \sqrt {\frac{{(d - a_{1} )(d - a_{2} )}}{{(d - b_{1} )(b_{2} - d)}}} , $$
$$ \chi^{*} = \frac{1}{2\chi }\left[ {\frac{{(2d - a_{1} - a_{2} )(d - b_{1} )(b_{2} - d) + (2d - b_{1} - b_{2} )(d - a_{1} )(d - a_{2} )}}{{(d - b_{1} )^{2} (b_{2} - d)^{2} }}} \right], $$
$$ \eta_{1} = - \frac{1}{2}\left( {a_{1} + a_{2} - b_{1} - b_{2} } \right),\;\nu_{1} = \frac{{a_{1} + a_{2} }}{2} + d,\;\alpha_{0} = A_{2} ,\;\alpha_{1} = A_{3} + \xi_{1} A_{2} . $$

Further, taking into account the expression \(F_{1} (z) = i\Phi_{1} (z)\), we get

$$ F_{1} (z) = iX(z)\left[ {P(z) + iY(z)Q(z)} \right]. $$
(B2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govorukha, V., Kamlah, M. Analysis of an interface crack with multiple electric boundary conditions on its faces in a one-dimensional hexagonal quasicrystal bimaterial. Arch Appl Mech 94, 589–607 (2024). https://doi.org/10.1007/s00419-024-02538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-024-02538-0

Keywords

Navigation