Skip to main content
Log in

Performance enhancement of vehicle suspension system with geometrically nonlinear inerters

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This research investigates the nonlinear dynamics and performance enhancement of a suspension system using a diamond-shaped linkage with inerter (D-inerter). The proposed suspension system consists of two inerters embedded in a four-bar linkage mechanism connected with a spring and a damper. Both sinusoidal and random road profiles are considered as external excitation sources. The evaluation of vibration isolation and riding comfort performance is based on displacement transmissibility, acceleration amplitude, car body acceleration, suspension stroke, and dynamic tyre load. The results show that compared with a linear suspension system, the D-inerter has a broader bandwidth of enhanced isolation and lower resonant peak. It is found that a larger inertance value and initial length between the ends of inerter can effectively improve the suppression performance of the nonlinear suspension. The root mean square of vehicle body acceleration with the D-inerter is decreased by 21.5% at the speed of 30 m/s. Additionally, design guidance is provided to select optimal inertance values for improved suspension performance. The results demonstrate that the D-inerter is beneficial for enhancing the suspension structural stability, riding comfort, and vibration suppression, which can potentially be employed for vibration isolation in suspension systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hać, A.: Optimal linear preview control of active vehicle suspension. Veh. Syst. Dyn. 21(1), 167–195 (1992)

    Article  Google Scholar 

  2. Roh, H.S., Park, Y.: Stochastic optimal preview control of an active vehicle suspension. J. Sound Vib. 220(2), 313–330 (1999)

    Article  Google Scholar 

  3. Hu, Y., Chen, M.Z.Q., Hou, Z.: Multiplexed model predictive control for active vehicle suspensions. Int. J. Control 88(2), 347–363 (2015)

    Article  MathSciNet  Google Scholar 

  4. Wang, R., Ding, R., Chen, L.: Application of hybrid electromagnetic suspension in vibration energy regeneration and active control. J. Vib. Control 24(1), 223–233 (2018)

    Article  MathSciNet  Google Scholar 

  5. Yao, G.Z., Yap, F.F., Chen, G., Li, W.H., Yeo, S.H.: MR damper and its application for semi-active control of vehicle suspension system. Mechatronics 12(7), 963–973 (2002)

    Article  Google Scholar 

  6. Shen, Y., Golnaraghi, M.F., Heppler, G.R.: Semi-active vibration control schemes for suspension systems using magnetorheological dampers. J. Vib. Control 12(1), 3–24 (2006)

    Article  Google Scholar 

  7. Tseng, H.E., Hrovat, D.: State of the art survey: active and semi-active suspension control. Veh. Syst. Dyn. 53(7), 1034–1062 (2015)

    Article  Google Scholar 

  8. Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control 47(10), 1648–1662 (2002)

    Article  MathSciNet  Google Scholar 

  9. Papageorgiou, C., Houghton, N.E., Smith, M.C.: Experimental testing and analysis of inerter devices. J. Dyn. Syst. Meas. Control 131(1), 011001 (2009)

    Article  Google Scholar 

  10. Li, C., Liang, M., Wang, Y., Dong, Y.: Vibration suppression using two-terminal flywheel. Part I: modeling and characterization. J. Vib. Control 18(8), 1096–1105 (2012)

    Article  Google Scholar 

  11. Swift, S.J., Smith, M.C., Glover, A.R., Papageorgiou, C., Gartner, B., Houghton, N.E.: Design and modelling of a fluid inerter. Int. J. Control 86(11), 2035–2051 (2013)

    Article  MathSciNet  Google Scholar 

  12. Liu, X., Jiang, J.Z., Titurus, B., Harrison, A.: Model identification methodology for fluid-based inerters. Mech. Syst. Signal Process. 106, 479–494 (2018)

    Article  Google Scholar 

  13. Jiang, J.Z., Matamoros-Sanchez, A.Z., Goodall, R.M., Smith, M.C.: Passive suspensions incorporating inerters for railway vehicles. Veh. Syst. Dyn. 50(Suppl. 1), 263–276 (2012)

    Article  Google Scholar 

  14. Wang, F.C., Hong, M.F., Chan, C.W.: Building suspensions with inerters. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 224(8), 1605–1616 (2010)

    Article  Google Scholar 

  15. Lazar, I.F., Neild, S.A., Wagg, D.J.: Using an inerter-based device for structural vibration suspension. Earthq. Eng. Struct. Dyn. 43, 1129–1147 (2014)

    Article  Google Scholar 

  16. Li, Y., Jiang, J.Z., Neild, S.A.: Inerter-based configurations for main-landing-gear shimmy suppression. J. Aircr. 54(2), 684–693 (2017)

    Article  Google Scholar 

  17. Luo, J., Macdonald, J.H.G., Jiang, J.Z.: Identification of optimum cable vibration absorbers using fixed-sized-inerter layouts. Mech. Mach. Theory 140, 292–304 (2019)

    Article  Google Scholar 

  18. Smith, M.C., Wang, F.C.: Performance benefits in passive vehicle suspensions employing inerters. Veh. Syst. Dyn. 42(4), 235–257 (2004)

    Article  Google Scholar 

  19. Hu, Y., Chen, M.Z., Sun, Y.: Comfort-oriented vehicle suspension design with skyhook inerter configuration. J. Sound Vib. 405, 34–47 (2017)

    Article  Google Scholar 

  20. Shen, Y., Chen, L., Yang, X., Shi, D., Yang, J.: Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension. J. Sound Vib. 361, 148–158 (2016)

    Article  Google Scholar 

  21. Wang, F.C., Su, W.J.: Impact of inerter nonlinearities on vehicle suspension control. Veh. Syst. Dyn. 46(7), 575–595 (2008)

    Article  Google Scholar 

  22. He, H., Li, Y., Jiang, J.Z., Burrow, S., Neild, S., Conn, A.: Enhancing the trade-off between ride comfort and active actuation requirements via an inerter-based passive-active-combined automotive suspension. Veh. Syst. Dyn. (2023). https://doi.org/10.1080/00423114.2023.2184703

    Article  Google Scholar 

  23. Kuznetsov, A., Mammadov, M., Sultan, I., Hajilarov, E.: Optimization of improved suspension system with inerter device of the quarter-car model in vibration analysis. Arch. Appl. Mech. 81, 1427–1437 (2011)

    Article  Google Scholar 

  24. Wang, Y., Ding, H., Chen, L.-Q.: Averaging analysis on a semi-active inerter-based suspension system with relative-acceleration-relative-velocity control. J. Vib. Control 26(13–14), 1199–1215 (2020)

    Article  MathSciNet  Google Scholar 

  25. Ge, Z., Wang, W., Li, G., Rao, D.: Design, parameter optimisation, and performance analysis of active tuned inerter damper (TID) suspension for vehicle. J. Sound Vib. 525, 116750 (2022)

    Article  Google Scholar 

  26. Yang, J., Jiang, J.Z., Neild, S.A.: Dynamic analysis and performance evaluation of nonlinear inerter-based vibration isolators. Nonlinear Dyn. 99, 1823–1839 (2020)

    Article  Google Scholar 

  27. Dong, Z., Shi, B., Yang, J., Li, T.: Suppression of vibration transmission in coupled systems with an inerter-based nonlinear joint. Nonlinear Dyn. 107, 1637–1662 (2022)

    Article  Google Scholar 

  28. Dai, W., Shi, B., Yang, J., Zhu, X., Li, T.: Enhanced suppression of longitudinal vibration transmission in propulsion shaft system using nonlinear tuned mass damper inerter. J. Vib. Control 29(11–12), 2528–2538 (2023)

    Article  MathSciNet  Google Scholar 

  29. Wang, Y., Li, H.-X., Cheng, C., Ding, H., Chen, L.-Q.: Dynamic performance analysis of a mixed-connected inerter-based quasi-zero stiffness vibration isolator. Struct. Control Health Monit. 27(10), e2604 (2020)

    Article  Google Scholar 

  30. Wang, Y., Wang, P., Meng, H., Chen, L.-Q.: Nonlinear vibration and dynamic performance analysis of the inerter-based multi-directional vibration isolator. Arch. Appl. Mech. 92(12), 3597–3629 (2022)

    Article  Google Scholar 

  31. Wang, Y., Li, H.-X., Jiang, W.-A., Ding, H., Chen, L.-Q.: A base excited mixed-connected inerter-based quasi-zero stiffness vibration isolator with mistuned load. Mech. Adv. Mater. Struct. 29(25), 4224–4242 (2022)

    Article  Google Scholar 

  32. Sun, X., Jing, X.: Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech. Syst. Signal Process. 62–63, 149–163 (2015)

    Article  Google Scholar 

  33. Wang, Y., Jing, X.: Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure. Mech. Syst. Signal Process. 125, 142–169 (2019)

    Article  Google Scholar 

  34. Sun, X., Jing, X., Xu, J., Cheng, L.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333(9), 2404–2420 (2014)

    Article  Google Scholar 

  35. Shi, B., Dai, W., Yang, J.: Performance analysis of a nonlinear inerter-based vibration isolator with inerter embedded in a linkage mechanism. Nonlinear Dyn. 109, 419–442 (2022)

    Article  Google Scholar 

  36. Smith, M.C.: The inerter: a retrospective. Ann. Rev. Control Robot. Auton. Syst. 3, 361–391 (2020)

    Article  Google Scholar 

  37. Papalukopoulos, C., Natsiavas, S.: Nonlinear biodynamics of passengers coupled with quarter car models. J. Sound Vib. 304(1–2), 50–71 (2007)

    Article  Google Scholar 

  38. Silveira, M., Wahi, P., Fernandes, J.C.M.: Effects of asymmetrical damping on a 2 DOF quarter-car model under harmonic excitation. Commun. Nonlinear Sci. Numer. Simul. 43, 14–24 (2017)

    Article  MathSciNet  Google Scholar 

  39. Wang, S., Hua, L., Yang, C., Zhang, Y., Tan, X.: Nonlinear vibrations of a piecewise-linear quarter-car truck model by incremental harmonic balance method. Nonlinear Dyn. 92(4), 1719–1732 (2018)

    Article  Google Scholar 

  40. Xiao, Z., Jing, X.: Frequency-domain analysis and design of linear feedback of nonlinear systems and applications in vehicle suspensions. IEEE/ASME Trans. Mechatron. 21, 506–517 (2015)

    Google Scholar 

  41. Yuan, H., Li, Y., Jiang, J.Z., Al Sakka, M., Dhaens, M., Burrow, S., Gonzalez-Buelga, A., Clare, L., Mellor, P.: A design methodology for passive mechatronic vibration absorbers. Mech. Mach. Theory 167, 104523 (2022)

    Article  Google Scholar 

  42. Sun, X., Cai, Y., Chen, L., Liu, Y., Wang, S.: Vehicle height and posture control of the electronic air suspension system using the hybrid system approach. Veh. Syst. Dyn. 54(3), 328–352 (2016)

    Article  Google Scholar 

  43. Shen, Y., Liu, Y., Chen, L., Yang, X.: Optimal design and experimental research of vehicle suspension based on a hydraulic electric inerter. Mechatronics 61, 12–19 (2019)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant Numbers 12172185 and 12202152, by the Zhejiang Provincial Natural Science Foundation of China under Grant Number LY22A020006, and by Ningbo Municipal Natural Science Foundation of China under Grant Number 2022J174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, B., Dai, W. & Yang, J. Performance enhancement of vehicle suspension system with geometrically nonlinear inerters. Arch Appl Mech 94, 39–55 (2024). https://doi.org/10.1007/s00419-023-02502-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02502-4

Keywords

Navigation