Skip to main content
Log in

A hybrid computational scheme on electromechanically coupled behaviors of aligned MWCNT/polymer nanocomposite sensors with strain-dependent tunneling effect

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The sensitivity of randomly distributed multi-walled carbon nanotube (MWCNT)/polymer nanocomposite sensors has been extensively investigated, while that of aligned nanocomposite sensors is to be explored. In this paper, a novel hybrid computational scheme is presented for the transversely isotropic sensing behaviors of aligned MWCNT/polymer nanocomposite sensors combining micromechanics and finite element simulations. Specifically, the strain-dependent tunneling effect and multi-scale simulation of underlying heterogeneous microstructures are analyzed cooperatively to quantitatively illustrate the electromechanical coupling phenomenon of strain sensors. First, the effective elastic and electric properties of coated MWCNT with the weak interface connection are calculated by the Mori–Tanaka method on the microscopic scale. Then, the mesoscopic representative volume element (RVE) is established by coated MWCNTs as inclusions and polymer as the matrix. The tunneling effect and electric damage process are implemented with a proposed strain-dependent tunneling distance. Next, the macroscopic strain sensing behaviors of homogenized RVEs are evaluated with finite element simulations. The predicted resistance change ratio and sensitivity of aligned MWCNT/polymer nanocomposite sensors are both consistent with the experimental data over a wide loading range. This research has demonstrated the high sensing performance of aligned MWCNT/polymer nanocomposite sensors along the preferred direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2011 Elsevier

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Slobodian, P., Danova, R., Olejnik, R., Matyas, J., Münster, L.: Multifunctional flexible and stretchable polyurethane/carbon nanotube strain sensor for human breath monitoring. Polym. Adv. Technol. 30, 1891–1898 (2019)

    Article  Google Scholar 

  2. Geng, Y., Cao, R., Innocent, M.T., Hu, Z., Zhu, L., Wang, L., Xiang, H., Zhu, M.: A high-sensitive wearable sensor based on conductive polymer composites for body temperature monitoring. Compos. Part A Appl. 163, 107269 (2022)

    Article  Google Scholar 

  3. Akhtar, I., Chang, S.H.: Highly aligned carbon nanotubes and their sensor applications. Nanoscale 12, 21447–21458 (2020)

    Article  Google Scholar 

  4. Huang, H., Su, S., Wu, N., Wan, H., Wan, S., Bi, H., Sun, L.: Graphene-based sensors for human health monitoring. Front. Chem. 399, 66 (2019)

    Google Scholar 

  5. Sánchez-Romate, X.F., Artigas, J., Jiménez-Suárez, A., Sánchez, M., Güemes, A., Ureña, A.: Critical parameters of carbon nanotube reinforced composites for structural health monitoring applications: empirical results versus theoretical predictions. Compos. Sci. Technol. 171, 44–53 (2019)

    Article  Google Scholar 

  6. Sun, X., Sun, J., Li, T., Zheng, S., Wang, C., Tan, W., Zhang, J., Liu, C., Ma, T., Qi, Z.: Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites. Nano-Micro Lett. 11, 1–14 (2019)

    Article  Google Scholar 

  7. Nankali, M., Nouri, N.M., Malek, N.G., Amjadi, M.: Dynamic thermoelectromechanical characterization of carbon nanotube nanocomposite strain sensors. Sens. Actuator A Phys. 332, 113122 (2021)

    Article  Google Scholar 

  8. Liu, M.Y., Hang, C.Z., Wu, X.Y., Zhu, L.Y., Wen, X.H., Wang, Y., Zhao, X.F., Lu, H.L.: Investigation of stretchable strain sensor based on CNT/AgNW applied in smart wearable devices. Nanotechnology 33, 255501 (2022)

    Article  Google Scholar 

  9. Cetin, M.S., Toprakci, H.A.K.: Flexible electronics from hybrid nanocomposites and their application as piezoresistive strain sensors. Compos. Part B Eng. 224, 109199 (2021)

    Article  Google Scholar 

  10. Nadgir, O., Dornisch, W., Müller, R., Keip, M.A.: A phase-field model for transversely isotropic ferroelectrics. Arch. Appl. Mech. 89, 1057–1068 (2019)

    Article  Google Scholar 

  11. Wang, S., Yi, M., Xu, B.X.: A phase-field model of relaxor ferroelectrics based on random field theory. Int. J. Solids Struct. 83, 142–153 (2016)

    Article  Google Scholar 

  12. Chen, Y.H., Lu, T.J.: Cracks and fracture in piezoelectrics. Adv. Appl. Mech. 39, 121–215 (2003)

    Article  Google Scholar 

  13. Yan, T., Wang, Z., Pan, Z.J.: Flexible strain sensors fabricated using carbon-based nanomaterials: a review. Curr. Opin. Solid State Mater. Sci. 22, 213–228 (2018)

    Article  Google Scholar 

  14. Yan, T., Wu, Y., Yi, W., Pan, Z.: Recent progress on fabrication of carbon nanotube-based flexible conductive networks for resistive-type strain sensors. Sens. Actuator A Phys. 327, 112755 (2021)

    Article  Google Scholar 

  15. Sirohi, J., Chopra, I.: Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. 11, 246–257 (2000)

    Article  Google Scholar 

  16. Huo, Z., Wang, X., Zhang, Y., Wan, B., Wu, W., Xi, J., Yang, Z., Hu, G., Li, X., Pan, C.: High-performance Sb-doped p-ZnO NW films for self-powered piezoelectric strain sensors. Nano Energy 73, 104744 (2020)

    Article  Google Scholar 

  17. Lynch, C.S.: The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT. Acta Mater. 44, 4137–4148 (1996)

    Article  Google Scholar 

  18. Xia, X., Zhong, Z.: Conservation integrals for the interfacial crack in bimaterial and layered ferroelectrics. Eng. Fract. Mech. 134, 202–217 (2015)

    Article  Google Scholar 

  19. Huber, J.E., Fleck, N.A., Landis, C.M., McMeeking, R.M.: A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids 47, 1663–1697 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miehe, C., Welschinger, F., Hofacker, M.: A phase field model of electromechanical fracture. J. Mech. Phys. Solids 58, 1716–1740 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, B.X., Schrade, D., Gross, D., Mueller, R.: Phase field simulation of domain structures in cracked ferroelectrics. Int. J. Fract. 165, 163–173 (2010)

    Article  MATH  Google Scholar 

  22. Kiefer, B., Lagoudas, D.C.: Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading. J. Intell. Mater. Syst. Struct. 20, 143–170 (2009)

    Article  Google Scholar 

  23. Keip, M.A., Steinmann, P., Schröder, J.: Two-scale computational homogenization of electro-elasticity at finite strains. Comput. Methods Appl. Mech. Eng. 278, 62–79 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schröder, J., Keip, M.A.: Two-scale homogenization of electromechanically coupled boundary value problems. Comput. Mech. 50, 229–244 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Y., Weng, G.J.: Magnetoelectric coupling and overall properties of multiferroic composites with 0–0 and 1–1 connectivity. J. Appl. Phys. 118, 174102 (2015)

    Article  Google Scholar 

  26. Humer, A., Pechstein, A.S., Meindlhumer, M., Krommer, M.: Nonlinear electromechanical coupling in ferroelectric materials: large deformation and hysteresis. Acta Mech. 231, 2521–2544 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nag, A., Alahi, M., Eshrat, E., Mukhopadhyay, S.C., Liu, Z.: Multi-walled carbon nanotubes-based sensors for strain sensing applications. Sensors 21, 1261 (2021)

    Article  Google Scholar 

  28. Allaoui, A., Hoa, S.V., Pugh, M.D.: The electronic transport properties and microstructure of carbon nanofiber/epoxy composites. Compos. Sci. Technol. 68, 410–416 (2008)

    Article  Google Scholar 

  29. Wang, Y., Weng, G.J., Meguid, S.A., Hamouda, A.M.: A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. J. Appl. Phys. 115, 193706 (2014)

    Article  Google Scholar 

  30. Simmons, J.G.: Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 2581–2590 (1963)

    Article  MATH  Google Scholar 

  31. Lu, X., Yvonnet, J., Detrez, F., Bai, J.: Multiscale modeling of nonlinear electric conductivity in graphene-reinforced nanocomposites taking into account tunnelling effect. J. Comput. Phys. 337, 116–131 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hu, N., Karube, Y., Yan, C., Masuda, Z., Fukunaga, H.: Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56, 2929–2936 (2008)

    Article  Google Scholar 

  33. Hu, N., Karube, Y., Arai, M., Watanabe, T., Yan, C., Li, Y., Liu, Y., Fukunaga, H.: Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48, 680–687 (2010)

    Article  Google Scholar 

  34. Duan, L., Fu, S., Deng, H., Zhang, Q., Wang, K., Chen, F., Fu, Q.: The resistivity-strain behavior of conductive polymer composites: stability and sensitivity. J. Mater. Chem. A 2, 17085–17098 (2014)

    Article  Google Scholar 

  35. Natarajan, T.S., Eshwaran, S.B., Stöckelhuber, K.W., Wießner, S., Pötschke, P., Heinrich, G., Das, A.: Strong strain sensing performance of natural rubber nanocomposites. ACS Appl. Mater. Interfaces 9, 4860–4872 (2017)

    Article  Google Scholar 

  36. Cortés, A., Sánchez-Romate, X.F., Jiménez-Suárez, A., Campo, M., Ureña, A., Prolongo, S.G.: Mechanical and strain-sensing capabilities of carbon nanotube reinforced composites by digital light processing 3D printing technology. Polymers 12, 975 (2020)

    Article  Google Scholar 

  37. Abshirini, M., Charara, M., Liu, Y., Saha, M., Altan, M.C.: 3D printing of highly stretchable strain sensors based on carbon nanotube nanocomposites. Adv. Eng. Mater. 20, 1800425 (2018)

    Article  Google Scholar 

  38. Wang, Z., Ye, X.: A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle. Nanotechnology 24, 265704 (2013)

    Article  Google Scholar 

  39. Xia, X.D., Zhao, S.J., Fang, C., Weng, G.J.: Modeling the strain-dependent electrical resistance and strain sensitivity factor of CNT-polymer nanocomposites. Math. Method. Appl. Sci. 66, 1–15 (2020)

    Google Scholar 

  40. Xia, X.D., Zhao, S.J., Yin, H.M., Weng, G.J.: Revealing the AC electromechanically coupled effects and stable sensitivity on the dielectric loss in CNT-based nanocomposite sensors. Mater. Des. 216, 110557 (2022)

    Article  Google Scholar 

  41. Tang, Z.H., Li, Y.Q., Huang, P., Wang, H., Hu, N., Fu, S.Y.: Comprehensive evaluation of the piezoresistive behavior of carbon nanotube-based composite strain sensors. Compos. Sci. Technol. 208, 108761 (2021)

    Article  Google Scholar 

  42. Xia, X.D., Zhao, S.J., Zhang, J.J., Fang, C., Weng, G.J.: A unified investigation into the tensile and compressive sensing performance in highly sensitive MWCNT/epoxy nanocomposite strain sensor through loading-dependent tunneling distance. Compos. Sci. Technol. 230, 109723 (2022)

    Article  Google Scholar 

  43. Matos, M.A.S., Tagarielli, V.L., Baiz-Villafranca, P.M., Pinho, S.T.: Predictions of the electro-mechanical response of conductive CNT-polymer composites. J. Mech. Phys. Solids 114, 84–96 (2018)

    Article  Google Scholar 

  44. Matos, M.A.S., Tagarielli, V.L., Pinho, S.T.: On the electrical conductivity of composites with a polymeric matrix and a non-uniform concentration of carbon nanotubes. Compos. Sci. Technol. 188, 108003 (2020)

    Article  Google Scholar 

  45. Yang, H., Yuan, L., Yao, X.F., Fang, D.N.: Piezoresistive response of graphene rubber composites considering the tunneling effect. J. Mech. Phys. Solids 139, 103943 (2020)

    Article  Google Scholar 

  46. Santos, A.R., Amorim, L., Nunes, J.P., Silva, A.F., Viana, J.C.: Aligned carbon nanotube-based sensors for strain monitoring of composites. IEEE Sens. J. 21, 14718–14725 (2021)

    Article  Google Scholar 

  47. Oliva-Avilés, A.I., Avilés, F., Sosa, V.: Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon 49, 2989–2997 (2011)

    Article  Google Scholar 

  48. Santos, A., Amorim, L., Nunes, J., Rocha, L., Silva, A., Viana, J.: Aligned carbon nanotube based sensors for strain sensing applications. Sens. Actuator A Phys. 289, 157–164 (2019)

    Article  Google Scholar 

  49. Parmar, K., Mahmoodi, M., Park, C., Park, S.S.: Effect of CNT alignment on the strain sensing capability of carbon nanotube composites. Smart Mater. Struct. 22, 075006 (2013)

    Article  Google Scholar 

  50. Oliva-Avilés, A., Avilés, F., Seidel, G.T., Sosa, V.: On the contribution of carbon nanotube deformation to piezoresistivity of carbon nanotube/polymer composites. Compos. Part B Eng. 47, 200–206 (2013)

    Article  Google Scholar 

  51. Talamadupula, K.K., Seidel, G.D.: Statistical analysis of effective electro-mechanical properties and percolation behavior of aligned carbon nanotube/polymer nanocomposites via computational micromechanics. Comput. Mater. Sci. 197, 110616 (2021)

    Article  Google Scholar 

  52. Andrews, R., Weisenberger, M.: Carbon nanotube polymer composites. Curr. Opin. Solid Struct. Mater. 8, 31–37 (2004)

    Article  Google Scholar 

  53. Hill, R.: Theory of mechanical properties of fiber-strengthened materials: I. Elastic behavior. J. Mech. Phys. Solids 13, 89–101 (1964)

    Article  Google Scholar 

  54. Weng, G.J.: Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 22, 845–856 (1984)

    Article  MATH  Google Scholar 

  55. Xia, X., Wang, Y., Zhong, Z., Weng, G.J.: A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams. J. Appl. Phys. 120, 085102 (2016)

    Article  Google Scholar 

  56. Xia, X.D., Hao, J., Wang, Y., Zhong, Z., Weng, G.J.: Theory of electrical conductivity and dielectric permittivity of highly aligned graphene-based nanocomposites. J. Phys. Condens. Matter 29, 205702 (2017)

    Article  Google Scholar 

  57. Qiu, Y., Weng, G.: On the application of Mori-Tanaka’s theory involving transversely isotropic spheroidal inclusions. Int. J. Eng. Sci. 28, 1121–1137 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  58. Landau, L.D.: On the theory of phase transitions. I. Zh. Eksp. Teor. Fiz. 11, 19 (1937)

    Google Scholar 

  59. Sarfraz, M., Ba-Shammakh, M.: Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post-combustion flue gases. J. Ind. Eng. Chem. 36, 154–162 (2016)

    Article  Google Scholar 

  60. Kim, S., Mulholland, G., Zachariah, M.: Density measurement of size selected multiwalled carbon nanotubes by mobility-mass characterization. Carbon 47, 1297–1302 (2009)

    Article  Google Scholar 

  61. van de Leemput, L., van Kempen, H.: Scanning tunnelling microscopy. Rep. Prog. Phys. 55, 1165–1240 (1992)

    Article  Google Scholar 

  62. Xia, X.D., Guo, X., Weng, G.J.: Creep rupture in carbon nanotube-based viscoplastic nanocomposites. Int. J. Plast. 150, 103189 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

Funded by the Alexander von Humboldt Research Fellowship (Grant No. CHN 1210283 HFST-P) and the National Natural Science Foundation of China (Grant No. 12372158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Xia.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The explicit expressions of \({\mathbf{S}}_{{\text{int}}}^{(\sigma )}\) and \({\mathbf{S}}_{{\text{int}}}^{(\chi )}\) in Eqs. (10) and (11)

The explicit expressions of \({\mathbf{S}}_{{\text{int}}}^{(\sigma )}\) are given as [57]

$$S_{1111}^{(\sigma )} = \frac{1}{{2(1 - \nu_{{\text{int}}}^{{}} )}}\left\{ {1 - 2\nu_{{\text{int}}}^{{}} + \frac{{3\alpha_{{{\text{CNT}}}}^{2} - 1}}{{\alpha_{{{\text{CNT}}}}^{2} - 1}} - \left[ {1 - 2\nu_{{\text{int}}}^{{}} + \frac{{3\alpha_{{{\text{CNT}}}}^{2} }}{{\alpha_{{{\text{CNT}}}}^{2} - 1}}} \right]g(\alpha_{{{\text{CNT}}}} )} \right\},$$
(A.1)
$$S_{2222}^{(\sigma )} = S_{3333}^{(\sigma )} = \frac{3}{{8(1 - \nu_{{\text{int}}}^{{}} )}}\frac{{\alpha_{{{\text{CNT}}}}^{2} }}{{\alpha_{{{\text{CNT}}}}^{2} - 1}} + \frac{1}{{4(1 - \nu_{{\text{int}}}^{{}} )}}\left[ {1 - 2\nu_{{\text{int}}}^{{}} - \frac{9}{{4(\alpha_{{{\text{CNT}}}}^{2} - 1)}}} \right]g(\alpha_{{{\text{CNT}}}}^{{}} ),$$
(A.2)
$$S_{2233}^{(\sigma )} = S_{3322}^{(\sigma )} = \frac{1}{{4(1 - \nu_{{\text{int}}}^{{}} )}}\left\{ {\frac{{\alpha_{{{\text{CNT}}}}^{2} }}{{2(\alpha_{{{\text{CNT}}}}^{2} - 1)}} - \left[ {1 - 2\nu_{{\text{int}}}^{{}} + \frac{3}{{4(\alpha_{{{\text{CNT}}}}^{2} - 1)}}} \right]g(\alpha_{{{\text{CNT}}}}^{{}} )} \right\},$$
(A.3)
$$S_{2211}^{(\sigma )} = S_{3311}^{(\sigma )} = - \frac{1}{{2(1 - \nu_{{\text{int}}}^{{}} )}}\frac{{\alpha_{{{\text{CNT}}}}^{2} }}{{\alpha_{{{\text{CNT}}}}^{2} - 1}} + \frac{1}{{4(1 - \nu_{{\text{int}}}^{{}} )}}\left\{ {\frac{{3\alpha_{{{\text{CNT}}}}^{2} }}{{\alpha_{{{\text{CNT}}}}^{2} - 1}} - (1 - 2\nu_{{\text{int}}}^{{}} )} \right\}g(\alpha_{{{\text{CNT}}}}^{{}} ),$$
(A.4)
$$S_{1122}^{(\sigma )} = S_{1133}^{(\sigma )} = - \frac{1}{{2(1 - \nu_{{\text{int}}}^{{}} )}}\left[ {1 - 2\nu_{{\text{int}}}^{{}} + \frac{1}{{\alpha_{{{\text{CNT}}}}^{2} - 1}}} \right] + \frac{1}{{2(1 - \nu_{{\text{int}}}^{{}} )}}\left[ {1 - 2\nu_{{\text{int}}}^{{}} + \frac{3}{{2(\alpha_{{{\text{CNT}}}}^{2} - 1)}}} \right]g(\alpha_{{{\text{CNT}}}}^{{}} ),$$
(A.5)
$$S_{2323}^{(\sigma )} = \frac{1}{{4(1 - \nu_{{\text{int}}}^{{}} )}}\left\{ {\frac{{\alpha_{{{\text{CNT}}}}^{2} }}{{2(\alpha_{{{\text{CNT}}}}^{2} - 1)}} + \left[ {1 - 2\nu_{{\text{int}}}^{{}} - \frac{3}{{4(\alpha_{{{\text{CNT}}}}^{2} - 1)}}} \right]g(\alpha_{{{\text{CNT}}}}^{{}} )} \right\},$$
(A.6)
$$S_{1212}^{(\sigma )} = S_{1313}^{(\sigma )} = \frac{1}{{4(1 - \nu_{{\text{int}}}^{{}} )}}\left\{ {1 - 2\nu_{{\text{int}}}^{{}} - \frac{{\alpha_{{{\text{CNT}}}}^{2} + 1}}{{\alpha_{{{\text{CNT}}}}^{2} - 1}} - \frac{1}{2}\left[ {1 - 2\nu_{{\text{int}}}^{{}} - \frac{{3(\alpha_{{{\text{CNT}}}}^{2} + 1)}}{{\alpha_{{{\text{CNT}}}}^{2} - 1}}} \right]g(\alpha_{{{\text{CNT}}}}^{{}} )} \right\}.$$
(A.7)

Here, \(g(\alpha_{{{\text{CNT}}}} ) = \left[ {\alpha_{{{\text{CNT}}}} /(\alpha_{{{\text{CNT}}}}^{2} - 1)^{3/2} } \right] \cdot \left[ {\alpha\,_{{{\text{CNT}}}} (\alpha_{{{\text{CNT}}}}^{2} - 1)^{1/2} - {\text{arccosh}}\,\alpha_{{{\text{CNT}}}} } \right]\) for MWCNT with \(\alpha_{{{\text{CNT}}}} > 1\),

In addition, the explicit expressions of \({\mathbf{S}}_{{\text{int}}}^{(\chi )} = {\text{diag}}\{ S_{11}^{(\chi )} ,S_{22}^{(\chi )} ,S_{33}^{(\chi )} \}\) are given as [58]

$$S_{22}^{(\chi )} = S_{33}^{(\chi )} = \frac{{\alpha_{{{\text{CNT}}}}^{{}} }}{{2(\alpha_{{{\text{CNT}}}}^{2} - 1)^{3/2} }}\left[ {\alpha_{{{\text{CNT}}}}^{{}} (\alpha\,_{{{\text{CNT}}}}^{2} - 1)^{1/2} - \text{arccosh}\, \alpha_{{{\text{CNT}}}}^{2} } \right],\quad S_{11}^{(\chi )} = 1 - 2S_{33}^{(\chi )} .$$
(A.8)

Appendix B: Some material and geometric parameters of RVEs listed in the tables

See Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Niekamp, R., Brands, D. et al. A hybrid computational scheme on electromechanically coupled behaviors of aligned MWCNT/polymer nanocomposite sensors with strain-dependent tunneling effect. Arch Appl Mech 93, 4305–4325 (2023). https://doi.org/10.1007/s00419-023-02493-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02493-2

Keywords

Navigation