Skip to main content
Log in

Three-dimensional Green’s functions for transversely isotropic poro-chemo-thermoelastic media

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Shale having a porous structure, is sensitive to thermal and chemical stimuli. In order to study the effects of concentrated piont sources on the mechanical behavior of porous materials, we introduce two displacement functions and derive the general solutions of the coupled fields based on the operator theory, superposition principle, and generalized Almansi’s theorem. Two examples are used to introduce the application of general solutions by the liquid-chemical-thermal equilibrium boundary conditions. In the first example, the general solutions are used to solve the problem of semi-infinite transversely isotropic poro-chemo-thermoelastic (PCT) cones subjected to a point fluid source, a point ion source or a point heat source at the vertex. In the other example, the general solutions are used to solve the problem of transversely isotropic PCT media with conical cavities subjected to a point fluid source, a point ion source or a point heat source at the origin. Finally, the contours of the coupled fields of PCT cones and PCT media with a conical cavity are drawn. The numerical results show that the variation of the vertex angle can affect the diffusion trend of the coupled fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Yang, L.Z., He, F.M., Li, Y., et al.: Three-dimensional steady-state closed form solution for multilayered fluid-saturated anisotropic finite media due to surface/internal point source. Appl. Math. Mech. 42(1), 17–38 (2021). https://doi.org/10.1007/s10483-021-2685-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Ghassemi, A., Diek, A.: A chemo-poroelastic solution for stress and pore pressure distribution around a wellbore in transversely isotropic shale//SPE/ISRM Rock Mechanics Conference. OnePetro (2002). https://doi.org/10.2118/78162-MS

    Article  Google Scholar 

  3. Soh, A.K., Liu, J.X., Hoon, K.H.: Three-dimensional Green’s functions for transversely isotropic magnetoelectroelastic solids. Int. J. Nonlin. Sci. Num. 4(2), 139–148 (2003). https://doi.org/10.1515/IJNSNS.2003.4.2.139

    Article  Google Scholar 

  4. Pan, E., Chen, W.: Static Green’s Functions in Anisotropic Media. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  5. Pan, E.: Green’s functions for geophysics: a review. Rep. Prog. Phys. 82(10), 106801 (2019). https://doi.org/10.1088/1361-6633/ab1877

    Article  MathSciNet  Google Scholar 

  6. Hsu, C.L., Hwu, C., Shiah, Y.C.: Three-dimensional boundary element analysis for anisotropic elastic solids and its extension to piezoelectric and magnetoelectroelastic solids. Eng. Anal. Bound. Elem. 98, 265–280 (2019). https://doi.org/10.1016/j.enganabound.2018.10.022

    Article  MathSciNet  MATH  Google Scholar 

  7. Hou, P.F., Teng, G.H., Chen, H.R.: Three-dimensional Green’s function for a point heat source in two-phase transversely isotropic magneto-electro-thermo-elastic material. Mech. Mater. 41(3), 329–338 (2009). https://doi.org/10.1016/j.mechmat.2008.12.001

    Article  Google Scholar 

  8. Qin, Q.H.: 2D Green’s functions of defective magnetoelectroelastic solids under thermal loading. Eng. Anal. Bound. Elem. 29(6), 577–585 (2005). https://doi.org/10.1016/j.enganabound.2004.11.002

    Article  MATH  Google Scholar 

  9. Qin, Q.H.: Thermoelectroelastic Green’s function for a piezoelectric plate containing an elliptic hole. Mech. Mater. 30(1), 21–29 (1998). https://doi.org/10.1016/S0167-6636(98)00022-2

    Article  Google Scholar 

  10. Ekbote, S., Abousleiman, Y.: Porochemothermoelastic solution for an inclined borehole in a transversely isotropic formation. J. Eng. Mech. 131(5), 522–533 (2005). https://doi.org/10.1061/(ASCE)0733-9399(2005)131:5(522)

    Article  MATH  Google Scholar 

  11. Cheng, H.: Poroelasticity. Springer International Publishing, Switzerland (2016)

    Book  MATH  Google Scholar 

  12. Ding, H.J., Jiang, A.M., Hou, P.F., et al.: Green’s functions for two-phase transversely isotropic magneto-electro-elastic media. Eng. Anal. Bound Elem. 29(6), 551–561 (2005). https://doi.org/10.1016/j.enganabound.2004.12.010

    Article  MATH  Google Scholar 

  13. Karapetian, E., Sevostianov, I., Kachanov, M.: Point force and point electric charge in infinite and semi-infinite transversely isotropic piezoelectric solids. Philos. Mag. B. 80(3), 331–359 (2000). https://doi.org/10.1080/13642810008208596

    Article  Google Scholar 

  14. Kumar, R., Gupta, V.: Green’s function for transversely isotropic thermoelastic diffusion bimaterials. J. Therm. Stresses 37(10), 1201–1229 (2014). https://doi.org/10.1080/01495739.2014.936248

    Article  Google Scholar 

  15. Wang, X., Pan, E.: Thermal Green’s functions in plane anisotropic multiferroic bimaterials with viscous interface. Acta. Mech. 209, 59–65 (2010). https://doi.org/10.1007/s00707-009-0152-9

    Article  MATH  Google Scholar 

  16. Zafari, Y., Shahmohamadi, M., Khojasteh, A., Rahimian, M.: Asymmetric Green’s functions for a functionally graded transversely isotropic tri-material. Appl. Math. Model. 72, 176–201 (2019). https://doi.org/10.1016/j.apm.2019.02.038

    Article  MathSciNet  MATH  Google Scholar 

  17. Hou, P.-F., Luo, W., Leung, A.Y.T.: A point heat source on the apex of a transversely isotro-pic piezothermoelastic cone. Eur. J. Mech. A. Solids 27(3), 418–428 (2008). https://doi.org/10.1016/j.euromechsol.2007.06.002

    Article  MATH  Google Scholar 

  18. Hou, P.F., Luo, W., Leung, A.Y.T.: A point heat source on the apex of a transversely isotropic magneto-electro-thermo-elastic cone. Int. J. Appl. Electrom. 27(1–2), 25–41 (2008). https://doi.org/10.3233/JAE-2008-936

    Article  Google Scholar 

  19. Xu, Y.T., Zhang, L.L.: 3D Green’s functions for a transversely isotropic thermoelastic cone. Appl. Math. Model. 36(12), 5891–5900 (2012). https://doi.org/10.1016/j.apm.2012.01.038

    Article  MathSciNet  MATH  Google Scholar 

  20. Selvadurai, A.P.S., Suvorov, A.P.: Thermo-Poroelasticity and Geomechanics. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  21. Hou, P.F., Zhao, M., Ju, J.W.: Three-dimensional Green’s functions for transversely isotropic thermoporoelastic biomaterials. J. Appl. Geophys. 95, 36–46 (2013). https://doi.org/10.1016/j.jappgeo.2013.05.001

    Article  Google Scholar 

  22. Hou, P.F., Zhao, M., Tong, J., Fu, B.: Three-dimensional steady-state Green’s functions for fluid-saturated, transversely isotropic, poroelastic bimaterials. J. Hydrol. 496, 217–224 (2013). https://doi.org/10.1016/j.jappgeo.2013.05.001

    Article  Google Scholar 

  23. Wu, D., Yang, L.Z., Gao, Y.: Three-dimensional Green’s functions of thermoporoelastic axisymmetric cones. Appl. Math. Model. 42, 315–329 (2017). https://doi.org/10.1016/j.apm.2016.10.023

    Article  MathSciNet  MATH  Google Scholar 

  24. Sahay, P.N.: Dynamic Green’s function for homogeneous and isotropic porous media. Geophys. J. Int. 147(3), 622–629 (2001). https://doi.org/10.1046/j.1365-246x.2001.01562.x

    Article  Google Scholar 

  25. Kaynia, A.M.: Transient green’s functions of fluid-saturated porous media. Comput. Struct. 44(1–2), 19–27 (1992). https://doi.org/10.1016/0045-7949(92)90219-P

    Article  MATH  Google Scholar 

  26. Meek, J.W., Wolf, J.P.: Cone models for soil layer on rigid rock. II. J. Geotech. Eng. 118(5), 686–703 (1992). https://doi.org/10.1061/(ASCE)0733-9410(1992)118:5(686)

    Article  Google Scholar 

  27. Wolf, J.P., Meek, J.W.: Dynamic stiffness of foundation on layered soil half-space using cone frustums. Earthq. Eng. Struct. D 23(10), 1079–1095 (1994). https://doi.org/10.1002/eqe.4290231004

    Article  Google Scholar 

  28. Jaya, K.P., Prasad, A.M.: Dynamic behaviour of pile foundations in layered soil medium using cone frustums. Geotechnique 54(6), 399–414 (2004). https://doi.org/10.1680/geot.2004.54.6.399

    Article  Google Scholar 

  29. Carstens, H.: Early diagenetic cone-in-cone structures in pyrite concretions. J. Sediment. Res. 55(1), 105–108 (1985). https://doi.org/10.1306/212F8625-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  30. Cobbold, P.R., Zanella, A., Rodrigues, N., et al.: Bedding-parallel fibrous veins (beef and cone-in-cone): worldwide occurrence and possible significance in terms of fluid overpressure, hyd-rocarbon generation and mineralization. Mar. Petrol. Geol. 43, 1–20 (2013). https://doi.org/10.1016/j.marpetgeo.2013.01.010

    Article  Google Scholar 

  31. Tchonkova, M., Peters, J., Sture, S.: A new mixed finite element method for poro-elasticity. Int. J. Numer. Anal. Met. 32(6), 579–606 (2008). https://doi.org/10.1002/nag.630

    Article  MATH  Google Scholar 

  32. Yang, Q.S., Qin, Q.H., Ma, L.H., Lu, X.Z., Cui, C.Q.: A theoretical model and finite element formulation for coupled thermo-electro-chemomechanical media. Mech. Mater. 42(2), 148–156 (2010). https://doi.org/10.1016/j.mechmat.2009.10.003

    Article  Google Scholar 

  33. Ding, H.J., Chen, B., Liang, J.: General solutions for coupled equations for piezoelectric media. Int. J. Solids. Struct. 33(16), 2283–2298 (1996). https://doi.org/10.1016/0020-7683(95)00152-2

    Article  MATH  Google Scholar 

  34. Cowin, S.C.: Anisotropic poroelasticity: fabric tensor formulation. Mech. Mater. 36(8), 665–677 (2004). https://doi.org/10.1016/j.mechmat.2003.05.001

    Article  Google Scholar 

  35. Li, X.Y., Chen, W.Q., Wang, H.Y.: General steady-state solutions for transversely isotropic thermoporoelastic media in three dimensions and its application. Eur. J. Mech. A. Solids 29(3), 317–326 (2010). https://doi.org/10.1016/j.euromechsol.2009.11.007

    Article  MATH  Google Scholar 

  36. Hou, P.F., Leung, A.Y.T., Chen, C.P.: Fundamental solution for transversely isotropic thermoelastic materials. Int. J. Solids Struct. 45(2), 392–408 (2008). https://doi.org/10.1016/j.ijsolstr.2007.08.024

    Article  MATH  Google Scholar 

  37. Cheng, H.D., Abousleiman, Y., Detournay, E., et al.: Mandel’s problem revisited. Géotechni-que 46(2), 187–195 (1996). https://doi.org/10.1680/geot.1996.46.2.187

    Article  Google Scholar 

  38. Kanfar, M.F., Chen, Z., Rahman, S.S.: Analyzing wellbore stability in chemically-active anisotropic formations under thermal, hydraulic, mechanical and chemical loadings. J. Nat. Gas Sci. Eng. 41, 93–111 (2017). https://doi.org/10.1016/j.jngse.2017.02.006

    Article  Google Scholar 

  39. Khan, S., Ansari, S., Han, H., Khosravi, N.: Importance of shale anisotropy in estimating in-situ stresses and wellbore stability analysis in horn river basin. In: Canadian Unconventional Resources Conference. SPE Canada Unconventional Resources Conference, vol. All Days (2011). https://doi.org/10.2118/149433-MS

  40. Gazetas, G.: Analysis of machine foundation vibrations: state of the art. Int. J. Soil. Dyn. Earthq. Eng. 2(1), 2–42 (1983). https://doi.org/10.1016/0261-7277(83)90025-6

    Article  Google Scholar 

  41. Aki, K., Richards, P.G.: Quantitative Seismology, Tokyo (2002)

  42. Ting, T.C.T.: Green’s functions for a half-space and two half-spaces bonded to a thin anisotropic elastic layer. J. Appl. Mech. (2008). https://doi.org/10.1115/1.2932097.051103

    Article  Google Scholar 

  43. Ghassemi, A., Tao, Q., Diek, A.: Influence of coupled chemo-poro-thermoelastic processes on pore pressure and stress distributions around a wellbore in swelling shale. J. Petrol. Sci. Eng. 67(1–2), 57–64 (2009). https://doi.org/10.1016/j.petrol.2009.02.015

    Article  Google Scholar 

  44. Cao, W.K., Deng, J.G., Liu, W., Yu, B.H., Tan, Q., Yang, L., Li, Y., Gao, J.J.: Pore pressure and stress distribution analysis around an inclined wellbore in a transversely isotropic formation based on the fully coupled chemo-thermo-poroelastic theory. J. Nat. Gas Sci. Eng. 40, 24–37 (2017). https://doi.org/10.1016/j.jngse.2017.02.002

    Article  Google Scholar 

  45. Li, J., Qiu, Z.G., Zhong, H.Y., Zhao, X., Huang, W.A., An, Z.J., Yang, Y.F.: The thermal and chemical effect on wellbore strengthening treatment in shale formation. J. Nat. Gas. Sci. Eng. 74, 103102 (2020). https://doi.org/10.1016/j.jngse.2019.103102

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11902132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

$$g_{i1} = C_{11} + C_{13} \mu_{i1} s_{i} - \alpha_{1} \mu_{i2} + \chi_{1} \mu_{i3} - \beta_{1} \mu_{i4} ,$$
$$g_{i2} = C_{12} + C_{13} \mu_{i1} s_{i} - \alpha_{1} \mu_{i2} + \chi_{1} \mu_{i3} - \beta_{1} \mu_{i4} ,$$
$$g_{i3} = C_{13} + C_{33} \mu_{i1} s_{i} - \alpha_{3} \mu_{i2} + \chi_{3} \mu_{i3} - \beta_{3} \mu_{i4} ,$$
$$g_{i4} = C_{44} \left( {\mu_{i1} - s_{i} } \right), \, \left( {i = 1,2,3,4,5} \right).$$

Coefficients in Eq. (11)

$$t_{11} = C_{11} \Delta + C_{44} \frac{{\partial^{2} }}{{\partial z^{2} }},\quad t_{12} = - \left( {C_{13} + C_{44} } \right)\frac{\partial }{\partial z},$$
$$t_{13} = \alpha_{1} ,\quad t_{14} = - x_{1} ,\quad t_{15} = \beta_{1}$$
$$t_{21} = - \left( {C_{13} + C_{44} } \right)\Delta \frac{\partial }{\partial z},\quad t_{22} = C_{44} \Delta + C_{33} \frac{{\partial^{2} }}{{\partial z^{2} }}$$
$$t_{23} = - \alpha_{3} \frac{\partial }{\partial z},\quad t_{24} = x_{3} \frac{\partial }{\partial z},\quad t_{25} = - \beta_{3} \frac{\partial }{\partial z}$$
(64)
$$t_{33} = \kappa_{11} \Delta + \kappa_{33} \frac{{\partial^{2} }}{{\partial z^{2} }},\quad t_{44} = \varphi_{11}^{s} \Delta + \varphi_{33}^{s} \frac{{\partial^{2} }}{{\partial z^{2} }},\quad t_{55} = \lambda_{11} \Delta + \lambda_{33} \frac{{\partial^{2} }}{{\partial z^{2} }},$$
$$\begin{gathered} a_{1} = \left( {C_{13} + C_{44} } \right)\left( {\varphi_{33}^{s} \lambda_{33} \alpha_{3} - \kappa_{33} \lambda_{33} x_{3} + \kappa_{33} \varphi_{33}^{s} \beta_{3} } \right) \hfill \\ \, - C_{33} \left( {\varphi_{33}^{s} \lambda_{33} \alpha_{1} - \kappa_{33} \lambda_{33} x_{1} + \kappa_{33} \varphi_{33}^{s} \beta_{1} } \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} b_{1} = \left( {C_{13} + C_{44} } \right)\left[ {\left( {\varphi_{11}^{s} \lambda_{33} + \varphi_{33}^{s} \lambda_{11} } \right)\alpha_{3} - \left( {\kappa_{11} \lambda_{33} + \kappa_{33} \lambda_{11} } \right)\chi_{3} + \left( {\kappa_{11} \varphi_{33}^{s} + \kappa_{33} \varphi_{11}^{s} } \right)\beta_{3} } \right] \hfill \\ \, - C_{44} \left( {\varphi_{33}^{s} \lambda_{33} \alpha_{1} - \kappa_{33} \lambda_{33} \chi_{1} + \kappa_{33} \varphi_{33}^{s} \beta_{1} } \right) \hfill \\ \, - C_{33} \left[ {\left( {\varphi_{11}^{s} \lambda_{33} + \varphi_{33}^{s} \lambda_{11} } \right)\alpha_{1} - \left( {\kappa_{11} \lambda_{33} + \kappa_{33} \lambda_{11} } \right)\chi_{1} + \left( {\kappa_{11} \varphi_{33}^{s} + \kappa_{33} \varphi_{11}^{s} } \right)\beta_{1} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} c_{1} = \left( {C_{13} + \, C_{44} } \right)\left( {\varphi_{11}^{s} \lambda_{11} \alpha_{3} - \kappa_{11} \lambda_{11} \chi_{3} + \kappa_{11} \varphi_{11}^{s} \beta_{3} } \right) \, - C_{33} \left( {\varphi_{11}^{s} \lambda_{11} \alpha_{1} - \kappa_{11} \lambda_{11} \chi_{1} + \kappa_{11} \varphi_{11}^{s} \beta_{1} } \right) \hfill \\ \, - C_{44} \left[ {\left( {\varphi_{11}^{s} \lambda_{33} + \varphi_{33}^{s} \lambda_{11} } \right)\alpha_{1} - \left( {\kappa_{11} \lambda_{33} + \kappa_{33} \lambda_{11} } \right)\chi_{1} + \left( {\kappa_{11} \varphi_{33}^{s} + \kappa_{33} \varphi_{11}^{s} } \right)\beta_{1} } \right] \, , \hfill \\ \end{gathered}$$
$$d_{1} = - C_{44 \, } \left( {\varphi_{11}^{s} \lambda_{11} \alpha_{1} - \kappa_{11} \lambda_{11} \chi_{1} + \kappa_{11} \varphi_{11}^{s} \beta_{1} } \right),$$
$$a_{2} = C_{44} \left( {\varphi_{33}^{s} \lambda_{33} \alpha_{3} - \kappa_{33} \lambda_{33} \chi_{3} + \kappa_{33} \varphi_{33}^{s} \beta_{3} } \right),$$
$$\begin{gathered} b_{2} \, = C_{11} \left( {\varphi_{33}^{s} \lambda_{33} \alpha_{3 \, } - \kappa_{33} \lambda_{33} \chi_{3} + \kappa_{33} \varphi_{33}^{s} \beta_{3} } \right) - \left( {C_{13} + C_{44} } \right)\left( {\varphi_{33}^{s} \lambda_{33} \alpha_{1} - \kappa_{33} \lambda_{33} \chi_{1} + \kappa_{33} \varphi_{33}^{s} \beta_{1} } \right) \, \hfill \\ \, + C_{44 \, } \left[ {\left( {\varphi_{33}^{s} \lambda_{11} + \varphi_{11}^{s} \lambda_{33} } \right)\alpha_{3} - \left( {\kappa_{33} \lambda_{11} + \kappa_{11} \lambda_{33} } \right) \, \chi_{3} + \left( {\kappa_{33} \varphi_{11}^{s} + \kappa_{11} \varphi_{33}^{s} } \right) \, \beta_{3} } \right] \, , \hfill \\ \end{gathered}$$
$$\begin{gathered} c_{2} = C_{11} \left[ {\left( {\varphi_{33}^{s} \lambda_{11} + \varphi_{11}^{s} \lambda_{33} } \right)\alpha_{3} \, - \left( {\kappa_{33} \lambda_{11} + \kappa_{11} \lambda_{33} } \right)\chi_{3} + \left( {\kappa_{33} \varphi_{11}^{s} + \kappa_{11} \varphi_{33}^{s} } \right)\beta_{3} } \right] \, \hfill \\ \, - \left( {C_{13} + C_{44} } \right)\left[ {\left( {\varphi_{33}^{s} \lambda_{11} + \varphi_{11}^{s} \lambda_{33} } \right)\alpha_{1} - \left( {\kappa_{33} \lambda_{11} + \kappa_{11} \lambda_{33} } \right)\chi_{1} + \left( {\kappa_{33} \varphi_{11}^{s} + \kappa_{11} \varphi_{33}^{s} } \right)\beta_{1} } \right] \hfill \\ \, + C_{44} \left( {\varphi_{11}^{s} \lambda_{11} \alpha_{3} - \kappa_{11} \lambda_{11} \chi_{3} + \kappa_{11} \varphi_{11}^{s} \beta_{3} } \right), \, \hfill \\ \end{gathered}$$
$$d_{2} \, = C_{11} \left( {\varphi_{11}^{s} \lambda_{11} \alpha_{3} - \kappa_{11} \lambda_{11} \chi_{3} + \kappa_{11} \varphi_{11}^{s} \beta_{3} } \right) - \left( {C_{13} + C_{44} } \right)\left( {\varphi_{11}^{s} \lambda_{11} \alpha_{1} - \kappa_{11} \lambda_{11} \chi_{1} + \kappa_{11} \varphi_{11}^{s} \beta_{1} } \right), \,$$
$$a_{3} = a_{0} \varphi_{33}^{s} \lambda_{33} , \, b_{3} = b_{0} \varphi_{33}^{s} \lambda_{33} + a_{0} \left( {\varphi_{11}^{s} \lambda_{33} + \varphi_{33}^{s} \lambda_{11} } \right),$$
$$c_{3} = c_{0} \varphi_{33}^{s} \lambda_{33} + b_{0} \left( {\varphi_{11}^{s} \lambda_{33} + \varphi_{33}^{s} \lambda_{11} } \right) + a_{0} \varphi_{11}^{s} \lambda_{11} ,$$
$$d_{3} = c_{0} \left( {\varphi_{11}^{s} \lambda_{33} + \varphi_{33}^{s} \lambda_{11} } \right) + b_{0} \varphi_{11}^{s} \lambda_{11} , \, e_{3} = c_{0} \varphi_{11}^{s} \lambda_{11} ,$$
$$a_{4} = a_{0} \kappa_{33} \lambda_{33} , \, b_{4} = b_{0} \kappa_{33} \lambda_{33} + a_{0} \left( {\kappa_{11} \lambda_{33} + \kappa_{33} \lambda_{11} } \right),$$
$$c_{4} = c_{0} \kappa_{33} \lambda_{33} + b_{0} \left( {\kappa_{11} \lambda_{33} + \kappa_{33} \lambda_{11} } \right) + a_{0} \kappa_{11} \lambda_{11} , \,$$
$$d_{4} = c_{0} \left( {\kappa_{11} \lambda_{33} + \kappa_{33} \lambda_{11} } \right) + b_{0} \kappa_{11} \lambda_{11} , \, e_{4} = c_{0} \kappa_{11} \lambda_{11} ,$$
$$a_{5} = a_{0} \kappa_{33} \varphi_{33}^{s} , \, b_{5} = b_{0} \kappa_{33} \varphi_{33}^{s} + a_{0} \left( {\kappa_{11} \varphi_{33}^{s} + \kappa_{33} \varphi_{11}^{s} } \right),$$
$$c_{5} = c_{0} \kappa_{33} \varphi_{33}^{s} + b_{0} \left( {\kappa_{11} \varphi_{33}^{s} + \kappa_{33} \varphi_{11}^{s} } \right) + a_{0} \kappa_{11} \varphi_{11}^{s} , \,$$
$$d_{5} = c_{0} \left( {\kappa_{11} \varphi_{33}^{s} + \kappa_{33} \varphi_{11}^{s} } \right) + b_{0} \kappa_{11} \varphi_{11}^{s} , \, e_{5} = c_{0} \kappa_{11} \varphi_{11}^{s} . \,$$
(65)

Coefficients in Eq. (20)

$$\begin{gathered} \eta_{i\varsigma } = a_{\varsigma } s_{i}^{6} - b_{\varsigma } s_{i}^{4} + c_{\varsigma } s_{i}^{2} - d_{\varsigma } , \, \left( {\varsigma = 1,2; \, \tau = 3,4,5} \right), \hfill \\ \eta_{3\tau } = \left( {a_{0} s_{\tau }^{4} - b_{0} s_{\tau }^{2} + c_{0} } \right)\left( {\varphi_{33}^{s} s_{\tau }^{2} - \varphi_{11}^{s} } \right)\left( {\lambda_{33} s_{\tau }^{2} - \lambda_{11} } \right), \hfill \\ \eta_{4\tau } = \left( {a_{0} s_{\tau }^{4} - b_{0} s_{\tau }^{2} + c_{0} } \right)\left( {\kappa_{33} s_{\tau }^{2} - \kappa_{11} } \right)\left( {\lambda_{33} s_{\tau }^{2} - \lambda_{11} } \right), \hfill \\ \eta_{5\tau } = \left( {a_{0} s_{\tau }^{4} - b_{0} s_{\tau }^{2} + c_{0} } \right)\left( {\kappa_{33} s_{\tau }^{2} - \kappa_{11} } \right)\left( {\varphi_{33}^{s} s_{\tau }^{2} - \varphi_{11}^{s} } \right),\quad \left( {i \, = 1,2,3,4,5} \right). \, \hfill \\ \end{gathered}$$
(66)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Qi, S., Han, J. et al. Three-dimensional Green’s functions for transversely isotropic poro-chemo-thermoelastic media. Arch Appl Mech 93, 3427–3460 (2023). https://doi.org/10.1007/s00419-023-02448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02448-7

Keywords

Navigation