Skip to main content
Log in

Harmonic plane waves in isotropic micropolar medium based on two-parameter nonlocal theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the system of equations for nonlocal micropolar elastic materials is developed taking into account the assumption that the attenuation functions for the elastic and micropolar material coefficients are different, and applied for harmonic body waves. The dispersion equations of harmonic body waves propagating in a micropolar medium and their cutoff frequencies are obtained in simple form based on the new assumption. The obtained dispersion relations are potentially useful in an inverse problem by fitting the data of elastic and micropolar harmonic waves speed to estimate the elastic and micropolar nonlocal parameters of the medium. Some concerning remarks about the difference between the two-parameter nonlocal theory and the one-parameter nonlocal theory of Eringen are numerically discussed to show the necessary of the developed theory in the problem of wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  2. Yan, J.W., Liew, K.M., He, L.H.: A higher-order gradient theory for modeling of the vibration behavior of single-wall carbon nanocones. Appl. Math. Model. 38(11–12), 2946–2960 (2014). https://doi.org/10.1016/j.apm.2013.11.010

    Article  MathSciNet  Google Scholar 

  3. Hoe, Y.S., Jaafar, C.L., Yong, N.T.: Molecular dynamics modeling and simulations of carbon nanotube-based gears. Sains Malays. 41(7), 901–906 (2012)

    Google Scholar 

  4. Chowdhury, S.C., Haque, B.Z., Gillespie, J.W., Hartman, D.R.: Molecular simulations of pristine and defective carbon nanotubes under monotonic and combined loading. Comput. Mater. Sci. 65, 133–143 (2012). https://doi.org/10.1016/j.commatsci.2012.07.007

    Article  Google Scholar 

  5. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972). https://doi.org/10.1016/0020-7225(72)90039-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972). https://doi.org/10.1016/0020-7225(72)90050-X

    Article  MATH  Google Scholar 

  7. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983). https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  8. Eringen, A.C.: Theory of nonlocal elasticity and some applications. Res. Mech. 21, 313–342 (1987)

    Google Scholar 

  9. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  10. Singh, B.: Propagation of waves in an incompressible rotating transversely isotropic nonlocal solid. Vietnam J. Mech. 43, 237–252 (2021). https://doi.org/10.15625/0866-7136/15533

    Article  Google Scholar 

  11. Zhang, Q., Sun, Y., Yang, J.: Propagation and reflection of plane waves in biological tissue based on nonlocal TPL thermoelasticity. Int. Commun. Heat Mass Transf. 128, 1–15 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105587

    Article  Google Scholar 

  12. Bachher, M., Sarkar, N.: Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer. Waves Random Complex Media 29(4), 595–613 (2019). https://doi.org/10.1080/17455030.2018.1457230

    Article  MathSciNet  MATH  Google Scholar 

  13. Das, N., Sarkar, N., Lahiri, A.: Reflection of plane waves from the stress-free isothermal and insulated boundaries of a nonlocal thermoelastic solid. Appl. Math. Model. 73, 526–544 (2019). https://doi.org/10.1016/j.apm.2019.04.028

    Article  MathSciNet  MATH  Google Scholar 

  14. Pramanik, A.S., Biswas, S.: Surface waves in nonlocal thermoelastic medium with state space approach. J. Therm. Stresses 43, 667–686 (2020). https://doi.org/10.1080/01495739.2020.1734129

    Article  Google Scholar 

  15. Lata, P., Singh, S.: Time harmonic interactions in non local thermoelastic solid with two temperatures. Struct. Eng. Mech. Int’l J. 74(3), 341–350 (2020)

    Google Scholar 

  16. Lata, P., Singh, S.: Axisymmetric deformations in a nonlocal isotropic thermoelastic solid with two temperature. Forces Mech. 6, 1–10 (2022). https://doi.org/10.1016/j.finmec.2021.100068

    Article  Google Scholar 

  17. Lata, P., Singh, S.: Effect of rotation and inclined load in a nonlocal magneto-thermoelastic solid with two temperature. Adv. Mat. Res. 11(1), 23–39 (2022). https://doi.org/10.12989/amr.2022.11.1.023

    Article  Google Scholar 

  18. Singh, S., Lata, P.: Effect of two temperature and nonlocality in an isotropic thermoelastic thick circular plate without energy dissipation. Partial Differ. Equ. Appl. Math. 7, 1–6 (2023). https://doi.org/10.1016/j.padiff.2023.100512

    Article  Google Scholar 

  19. Yan, D.J., Chen, A.L., Wang, Y.S., Zhang, C., Golub, M.: Propagation of guided elastic waves in nanoscale layered periodic piezoelectric composites. Eur. J. Mech. A Solids 66, 158–167 (2017). https://doi.org/10.1016/j.euromechsol.2017.07.003

    Article  MathSciNet  MATH  Google Scholar 

  20. Yan, D.J., Chen, A.L., Wang, Y.S., Zhang, C., Golub, M.: In-plane elastic wave propagation in nanoscale periodic layered piezoelectric structures. Int. J. Mech. Sci. 142–143, 276–288 (2018). https://doi.org/10.1016/j.ijmecsci.2018.04.054

    Article  Google Scholar 

  21. Tung, D.X.: Dispersion equation of Rayleigh waves in transversely isotropic nonlocal piezoelastic solids half-spaces. Vietnam J. Mech. 41(4), 363–371 (2019). https://doi.org/10.15625/0866-7136/14621

    Article  Google Scholar 

  22. Liu, C., Yu, J., Wang, X., Zhang, B., Zhang, X., Zhou, H.: Reflection and transmission of elastic waves through nonlocal piezoelectric plates sandwiched in two solid half-spaces. Thin Walled Struct. 168, 1–10 (2021). https://doi.org/10.1016/j.tws.2021.108306

    Article  Google Scholar 

  23. Kgurana, A., Tomar, S.K.: Reflection of plane longitudinal waves from the stress-free boundary of a nonlocal, micropolar solid half-space. J. Mech. Mater. Struct. 8, 95–107 (2013). https://doi.org/10.2140/jomms.2013.8.95

    Article  Google Scholar 

  24. Khurana, A., Tomar, S.K.: Rayleigh-type waves in nonlocal micropolar solid half-space. Ultrasonics 73, 162–168 (2017). https://doi.org/10.1016/j.ultras.2016.09.005

    Article  Google Scholar 

  25. Khurana, A., Tomar, S.K.: Waves at interface of dissimilar nonlocal micropolar elastic half-spaces. Mech. Adv. Mater. Struct. 26, 825–833 (2019). https://doi.org/10.1080/15376494.2018.1430261

    Article  Google Scholar 

  26. Kalka, K.K., Sheoran, D., Deswal, S.: Reflection of plane waves in a nonlocal micropolar thermoelastic medium under the effect of rotation. Acta Mech. 231, 2849–2866 (2020). https://doi.org/10.1007/s00707-020-02676-w

    Article  MathSciNet  MATH  Google Scholar 

  27. Kumar, S., Tomar, S.K.: Plane waves in nonlocal micropolar thermoelastic material with voids. J. Therm. Stresses 43, 1355–1378 (2020). https://doi.org/10.1080/01495739.2020.1787280

    Article  Google Scholar 

  28. Deswal, S., Sheoran, D., Thakran, S., Kalkal, K.K.: Reflection of plane waves in a nonlocal microstretch thermoelastic medium with temperature dependent properties under three-phase-lag model. Mech. Adv. Mater. Struct. 29(12), 1692–1707 (2022). https://doi.org/10.1080/15376494.2020.1837307

    Article  Google Scholar 

  29. Chakraborty, A.: Prediction of negative dispersion by a nonlocal poroelastic theory. J. Acoust. Soc. Am. 123, 56–67 (2008). https://doi.org/10.1121/1.2816576

    Article  Google Scholar 

  30. Tong, L.H., Yu, Y., Hu, W., Shi, Y., Xu, C.: On wave propagation characteristics in fluid saturated porous materials by a nonlocal Biot theory. J. Sound Vib. 379, 106–118 (2016). https://doi.org/10.1016/j.jsv.2016.05.042

    Article  Google Scholar 

  31. Tong, L.H., Lai, S.K., Zeng, L.L., Xu, C.J., Yang, J.: Nonlocal scale effect on Rayleigh wave propagation in porous fluid-saturated materials. Int. J. Mech. Sci. 148, 459–466 (2018). https://doi.org/10.1016/j.ijmecsci.2018.08.028

    Article  Google Scholar 

  32. Tung, D.X.: The reflection and transmission of waves at an imperfect interface between two nonlocal transversely isotropic liquid-saturated porous half-spaces. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1954265

    Article  Google Scholar 

  33. Tung, D.X.: Surface waves in nonlocal transversely isotropic liquid-saturated porous solid. Arch. Appl. Mech. 91, 2881–2892 (2021). https://doi.org/10.1007/s00419-021-01940-2

    Article  Google Scholar 

  34. Singh, D., Kaur, G., Tomar, S.K.: Waves in nonlocal elastic solid with voids. J. Elast. 128, 85–114 (2017). https://doi.org/10.1007/s10659-016-9618-x

    Article  MathSciNet  MATH  Google Scholar 

  35. Kaur, G., Singh, D., Tomar, S.K.: Love waves in a nonlocal elastic media with voids. J. Vibr. Control 25(8), 1470–1483 (2019). https://doi.org/10.1177/1077546318824144

    Article  MathSciNet  Google Scholar 

  36. Sarkar, N., Tomar, S.K.: Plane waves in nonlocal thermoelastic solid with voids. J. Therm. Stresses 42, 580–606 (2019). https://doi.org/10.1080/01495739.2018.1554395

    Article  Google Scholar 

  37. Kaur, G., Singh, D., Tomar, S.K.: Lamb waves in nonlocal ellastic with voids. J. Mech. Mater. Struct. 16, 389–405 (2020). https://doi.org/10.2140/jomms.2021.16.389

    Article  Google Scholar 

  38. Kaur, G., Singh, D., Tomer, S.K.: Rayleigh-type wave in a nonlocal elastic solid with voids. Eur. J. Mech. A Solids 71, 134–150 (2018). https://doi.org/10.1016/j.euromechsol.2018.03.015

    Article  MathSciNet  MATH  Google Scholar 

  39. Melnikov, Y.A., Melnikov, M.Y.: Green’s Functions: Construction and Applications, p. 10785. Walter de Gruyter GmbH & Co. KG, Berlin/Boston (2012). https://doi.org/10.1515/9783110253399

    Book  MATH  Google Scholar 

  40. Dufiy, D.G.: Green’s Functions with Applications. CRC Press, Tayor & Francis Group (2015)

    Book  Google Scholar 

  41. Romano, G., Barretta, R., Diaco, M., de Sciarra, F.M.: Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 121, 151–156 (2017). https://doi.org/10.1016/j.ijmecsci.2016.10.036

    Article  Google Scholar 

  42. Kaplunov, J., Prikazchikov, D.A., Prikazchikova, L.: On non-locally elastic Rayleigh wave. Philos. Trans. R. Soc. A 380(2231), 1–13 (2022). https://doi.org/10.1098/rsta.2021.0387

    Article  MathSciNet  Google Scholar 

  43. Kaplunov, J., Prikazchikov, D.A., Prikazchikova, L.: On integral and differential formulations in nonlocal elasticity. Eur. J. Mech. A Solids (2022). https://doi.org/10.1016/j.euromechsol.2021.104497

    Article  MATH  Google Scholar 

  44. Shaat, M., Abdelkefi, A.: New insights on the applicability of Eringen’s nonlocal theory. Int. J. Mech. Sci. 121, 67–75 (2017). https://doi.org/10.1016/j.ijmecsci.2016.12.013

    Article  Google Scholar 

  45. Li, C., He, T., Tian, X.: Nonlocal theory of thermoelastic diffusive materials and its application in structural dynamic thermo-elasto-diffusive responses analysis. Waves Random Complex Media 32(1), 174–203 (2020). https://doi.org/10.1080/17455030.2020.1767828

    Article  MathSciNet  MATH  Google Scholar 

  46. Eringen, A.C.: Plane waves in nonlocal micropolar elasticity. Int. J. Eng. Sci. 22, 1113–1121 (1984). https://doi.org/10.1016/0020-7225(84)90112-5

    Article  MATH  Google Scholar 

  47. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972). https://doi.org/10.1016/0020-7225(72)90070-5

    Article  MathSciNet  MATH  Google Scholar 

  48. Eringen, A.C.: Microcontinuum Field Theories: I. Foundations and Solids. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Thanh Tuan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Apendix A: Dispersion equations in one-parameter nonlocal theory

In special case, when \(\epsilon _1=\epsilon _2=\epsilon \)

The longitudinal acoustic branch (LA)

LA wave is dispersive wave propagating with \(\omega _1=\omega _1(k_0)\) determined by

$$\begin{aligned} \dfrac{\omega _1^2}{k_0^2}=\dfrac{c_1^2}{1+{\bar{\epsilon }}} \end{aligned}$$
(A.1)

where \({\bar{\epsilon }}=(k_0\epsilon )^2\).

The phase velocity \(x_1\) depends on angular frequency \({\bar{\omega }}\) as

$$\begin{aligned} x_1=\dfrac{1}{g}-2e{\bar{\omega }}^2{\bar{e}}^2 \end{aligned}$$
(A.2)

where \({\bar{e}}=\epsilon /\sqrt{j}\).

The cutoff frequency of LA waves is:

$$\begin{aligned} \omega _1^{\textrm{cutoff}}=\sqrt{\dfrac{1}{2eg{\bar{e}}^2}}\;\omega _0. \end{aligned}$$
(A.3)

The longitudinal optic branch (LO)

LO wave is dispersive wave propagating with \(\omega _3\) determined by

$$\begin{aligned} \dfrac{\omega _3^2}{k_0^2}=\dfrac{c_3^2}{1 + {\bar{\epsilon }}}+\dfrac{\omega _0^2}{k_0^2(1 + {\bar{\epsilon }})}. \end{aligned}$$
(A.4)

The phase velocity \(x_3\) depends on angular frequency \({\bar{\omega }}\) as

$$\begin{aligned} x_3=\dfrac{{\bar{\omega }}^2({\bar{\alpha }}+{\bar{\beta }} +{\bar{\gamma }}-2e{\bar{\omega }}^2{\bar{e}}^2)}{{\bar{\omega }}^2-1}. \end{aligned}$$
(A.5)

The cutoff frequency of LO waves is:

$$\begin{aligned} \omega _3^{\textrm{cutoff}}=\sqrt{\dfrac{{\bar{\alpha }}+{\bar{\beta }} +{\bar{\gamma }}}{2e{\bar{e}}^2}}\;\omega _0. \end{aligned}$$
(A.6)

The transverse acoustic branch (TA) propagating with \(\omega _2\) and the transverse optic branch (TO) propagating with \(\omega _4\) determined by

$$\begin{aligned} \omega ^4-2pk_0^2\omega ^2+qk_0^4=0 \end{aligned}$$
(A.7)

where

$$\begin{aligned} \begin{aligned} 2p&=\dfrac{1}{1 + {\bar{\epsilon }}}\left( \dfrac{\omega _0^2}{k_0^2}+c_2^2+c_4^2\right) ,\\ q&=\dfrac{1}{(1 + {\bar{\epsilon }})^2}\left[ \dfrac{\omega _0^2}{k_0^2} \left( c_2^2-\dfrac{j\omega _0^2}{4}\right) +c_2^2c_4^2\right] . \end{aligned} \end{aligned}$$
(A.8)

If we divide (A.7) by \(\omega _0^4\), we can express \(\omega _2\) and \(\omega _4\) in the form

$$\begin{aligned} \left( \dfrac{w_2}{\omega _0}\right) ^2=\dfrac{{\bar{k}}}{2e(1+{\bar{k}} {\bar{\epsilon }}^2)}\left( {\bar{p}}-\sqrt{{\bar{\Delta }}}\right) ,\quad \left( \dfrac{w_4}{\omega _0}\right) ^2=\dfrac{{\bar{k}}}{2e(1+{\bar{k}} {\bar{\epsilon }}^2)}\left( {\bar{p}}+\sqrt{{\bar{\Delta }}}\right) \end{aligned}$$
(A.9)

where

$$\begin{aligned} \begin{aligned} {\bar{p}}&=1+\dfrac{c_4^2}{c_2^2}+\dfrac{\omega _0^2}{k_0^2c_2^2}=1+{\bar{\gamma }}+\dfrac{2e}{{\bar{k}}},\\ {\bar{\Delta }}&=\sqrt{{\bar{p}}^2-{\bar{q}}}=\left( 1-\dfrac{c_4^2}{c_2^2} -\dfrac{\omega _0^2}{k_0^2c_2^2}\right) ^2+\dfrac{j\omega _0^4}{k_0^2c_2^4}= \left( 1-{\bar{\gamma }}-\dfrac{2e}{{\bar{k}}}\right) ^2+\dfrac{4e^2}{{\bar{k}}}. \end{aligned} \end{aligned}$$
(A.10)

This equation is the same with Eringen (1984; Eq. (3.10) [46]). Note that there is a typo in Eringen with notation \(k_1=(\rho j c_2^2/2\kappa )^{1/2}k\) instead of \((\rho j c_2^2/2\kappa )k\).

The equation defining phase velocity \(x_2\) and \(x_4\) of TA and TO waves depending on angular frequency \({\bar{\omega }}\) is

$$\begin{aligned} x^2+bx+c=0 \end{aligned}$$
(A.11)

where

$$\begin{aligned} \begin{aligned} b&=-\dfrac{-2+e+2(1+{\bar{\gamma }}){\bar{\omega }}^2+4e{\bar{\omega }} ^2(1-2{\bar{\omega }}^2){\bar{e}}_2^2}{2({\bar{\omega }}^2-1)},\\ c&=\dfrac{{\bar{\omega }}^2(-1+2e{\bar{\omega }}^2{\bar{e}}^2) (-{\bar{\gamma }}+2e{\bar{\omega }}^2{\bar{e}}^2)}{{\bar{\omega }}^2-1}. \end{aligned} \end{aligned}$$
(A.12)

The cutoff frequency of TA and TO waves is:

$$\begin{aligned} \omega _2^{\textrm{cutoff}}=\sqrt{\dfrac{{\bar{\gamma }}}{2e{\bar{e}}^2}}\;\omega _0\quad \text {and}\quad \omega _4^{\textrm{cutoff}}=\sqrt{\dfrac{1}{2e{\bar{e}}^2}}\;\omega _0. \end{aligned}$$
(A.13)

Appendix B: dispersion equations in local theory

In special case, when \(\epsilon _1=\epsilon _2=0\)

The longitudinal acoustic branch (LA) propagating with \(\omega _1\) determined by

$$\begin{aligned} \dfrac{\omega _1^2}{k_0^2}=c_1^2\quad \text {or}\quad V_1=c_1. \end{aligned}$$
(B.1)

In local theory, LA wave is not dispersive.

The longitudinal optic branch (LO) propagating with \(\omega _3\) determined by

$$\begin{aligned} \dfrac{\omega _3^2}{k_0^2}=c_3^2+\dfrac{\omega _0^2}{k_0^2} \end{aligned}$$
(B.2)

or with phase velocity depending on angular frequency

$$\begin{aligned} x_3=\dfrac{{\bar{\omega }}^2({\bar{\alpha }}+{\bar{\beta }}+{\bar{\gamma }})}{{\bar{\omega }}^2-1}. \end{aligned}$$
(B.3)

When \(\omega \rightarrow \infty \) or \(k_0\rightarrow \infty \), we have \(x_3\rightarrow {\bar{\alpha }}+{\bar{\beta }}+{\bar{\gamma }}\) or \(V_3\rightarrow c_3\).

The transverse acoustic branch (TA) propagating with \(\omega _2\) and the transverse optic branch (TO) propagating with \(\omega _4\) determined by

$$\begin{aligned} \omega ^4-2pk_0^2\omega ^2+qk_0^4=0 \end{aligned}$$
(B.4)

where

$$\begin{aligned} \begin{aligned}&2p=\dfrac{\omega _0^2}{k_0^2}+c_2^2+c_4^2,\\&q=\dfrac{\omega _0^2}{k_0^2}\left( c_2^2-\dfrac{j\omega _0^2}{4}\right) +c_2^2c_4^2. \end{aligned} \end{aligned}$$
(B.5)

If we divide (B.4) by \(k_0^4\), we can express \(\omega _2\) and \(\omega _4\) in the form [48]

$$\begin{aligned} \left( \dfrac{w_2}{k_0}\right) ^2=p-\sqrt{\Delta },\quad \left( \dfrac{w_4}{k_0}\right) ^2=p+\sqrt{\Delta } \end{aligned}$$
(B.6)

where \(\Delta =p^2-q=\dfrac{1}{4}\left( \dfrac{\omega _0^2}{k_0^2}+c_4^2+c_2^2\right) ^2+j\dfrac{\omega _0^4}{4k_0^2}\).

When \(k\rightarrow \infty \), we have \(V_2\rightarrow \min \{c_2,c_4\}\) and \(V_4\rightarrow \max \{c_2,c_4\}\).

Appendix C: eigen-vector of body waves

We express the displacements and stresses of plane waves in the form

$$\begin{aligned} \begin{aligned} u_i&=U_ie^{\text {i} k_0(p_1x_1+p_2x_2-Vt)},\; \phi _i= -\text {i} k_0\Sigma _ie^{\text {i} k_0(p_1x_1+p_2x_2-Vt)},\\ t_{ij}&=\text {i} k_0(\mu +\kappa )T_{ij}e^{\text {i} k_0(p_1x_1+p_2x_2-Vt)},\;m_{ij}=(\mu +\kappa )M_{ij}e^{\text {i} k_0(p_1x_1+p_2x_2-Vt)}. \end{aligned} \end{aligned}$$
(C.1)

Then, the eigen-vectors are computed from the constitutive equations (12) and (13) as:

LA wave:

$$\begin{aligned} \begin{aligned} U_1&=1, U_2=\frac{p_2}{p_1},\\ L_1L_2[T_{11}]&=\frac{e({\bar{\varepsilon }}_1-{\bar{\varepsilon }}_2)g\,p_1^2 +(1+{\bar{\varepsilon }}_2)\left[ 1 + (-2 + e) g p_2^2\right] }{g\,p_1},\\ L_1L_2[T_{12}]&=L_1L_2[T_{21}]=\left[ e({\bar{\varepsilon }}_1-{\bar{\varepsilon }}_2) +(2 - e)(1+{\bar{\varepsilon }}_2)\right] p_2,\\ L_1L_2[T_{22}]&=\frac{e({\bar{\varepsilon }}_1 -{\bar{\varepsilon }}_2)g\,p_2^2+(1+{\bar{\varepsilon }}_2)\left[ 1 + (-2 + e) g p_1^2\right] }{g\,p_1}. \end{aligned} \end{aligned}$$
(C.2)

The other amplitudes of displacements and stresses are zero. We can see that the displacement unit vector \({\textbf {d}}\) and propagation unit vector \({\textbf {p}}\) of LA wave are the same.

LO Wave:

$$\begin{aligned} \begin{aligned} \Sigma _1&=1, \Sigma _2=\frac{p_2}{p_1},\\ L_1L_2[T_{13}]&=-(1+{\bar{\varepsilon }}_1)e\frac{p_2}{p_1},L_1L_2[T_{31}] =(1+{\bar{\varepsilon }}_1)e\frac{p_2}{p_1},\\ L_1L_2[T_{23}]&=(1+{\bar{\varepsilon }}_1)e,\;L_1L_2[T_{32}] =-(1+{\bar{\varepsilon }}_1)e,\\ L_1L_2[M_{11}]&=(1+{\bar{\varepsilon }}_1){\bar{k}}\left[ \dfrac{{\bar{\alpha }}}{p_1} +({\bar{\beta }} + {\bar{\gamma }}) p_1\right] ,\\ L_1L_2[M_{21}]&=L_1L_2[M_{12}]=(1+{\bar{\varepsilon }}_1){\bar{k}} ({\bar{\beta }} + {\bar{\gamma }}) p_2,\\ L_1L_2[M_{22}]&=(1+{\bar{\varepsilon }}_1)\dfrac{{\bar{k}}}{p_1}\left[ {\bar{\alpha }}+({\bar{\beta }} + {\bar{\gamma }}) p_2^2\right] . \end{aligned} \end{aligned}$$
(C.3)

The rotational displacement vector \({\textbf {d}}\) and propagation vector \({\textbf {p}}\) of LO wave are the same.

TA and TO waves:

$$\begin{aligned} \begin{aligned} U_1&=\frac{p_2}{p_1}, U_2=-1,\Sigma _3=\frac{e({\bar{\varepsilon }}_1 -{\bar{\varepsilon }}_2)+(1+{\bar{\varepsilon }}_2)\left[ 1 - (1 + {\bar{\varepsilon }}_1) x\right] }{e(1+{\bar{\varepsilon }}_1)\, p_1},\\ L_1L_2[T_{11}]&=\left[ e({\bar{\varepsilon }}_1-{\bar{\varepsilon }}_2) +(1+{\bar{\varepsilon }}_2)(2 - e)\right] p_2,\\ L_1L_2[T_{12}]&=\dfrac{\left[ e({\bar{\varepsilon }}_1-{\bar{\varepsilon }}_2) +(1+{\bar{\varepsilon }}_2)(2 - e)\right] p_2^2-(1 + {\bar{\varepsilon }}_1) (1 + {\bar{\varepsilon }}_2) x}{p_1},\\ L_1L_2[T_{21}]&=\left[ e({\bar{\varepsilon }}_1-{\bar{\varepsilon }}_2) +(1+{\bar{\varepsilon }}_2)(2 - e)\right] p_1 +\dfrac{(1 + {\bar{\varepsilon }}_1)(1 + {\bar{\varepsilon }}_2) x}{p_1},\\ L_1L_2[T_{22}]&=-\left[ e({\bar{\varepsilon }}_1-{\bar{\varepsilon }}_2) +(1+{\bar{\varepsilon }}_2)(2 - e)\right] p_2,\\ L_1L_2[M_{13}]&=\dfrac{{\bar{k}} {\bar{\gamma }} \left[ e({\bar{\varepsilon }}_1 -{\bar{\varepsilon }}_2)-(1+{\bar{\varepsilon }}_2)(-1 + x + {\bar{\varepsilon }}_1 x)\right] }{e},\\ L_1L_2[M_{23}]&=\dfrac{{\bar{k}} {\bar{\gamma }} p_2 \left[ e({\bar{\varepsilon }}_1-{\bar{\varepsilon }}_2)-(1+{\bar{\varepsilon }}_2)(-1 + x + {\bar{\varepsilon }}_1 x)\right] }{e\,p_1}. \end{aligned} \end{aligned}$$
(C.4)

The displacement vector \({\textbf {d}}\) and propagation vector \({\textbf {p}}\) of TA and TO wave are perpendicular.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinh, P.C., Tuan, T.T. Harmonic plane waves in isotropic micropolar medium based on two-parameter nonlocal theory. Arch Appl Mech 93, 3359–3377 (2023). https://doi.org/10.1007/s00419-023-02443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02443-y

Keywords

Navigation