Skip to main content
Log in

Stoneley wave propagation in transversely isotropic thermoelastic rotating medium with memory-dependent derivative and two temperature

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the present paper, we bring forth the study of the propagation of the Stoneley wave with modified GN theory of type II thermoelasticity without energy dissipation, including memory-dependent derivative (MDD) and two temperatures and with rotation. Secular equations of Stoneley waves at the interface of two separate homogeneous transversely isotropic (HTI) thermoelastic mediums are determined in the form of determinants after constructing the formal solution based on the necessary boundary conditions. The wave characteristics have been obtained for different Kernel functions of the MDD from the secular equations and are depicted graphically. The effect of Kernel functions and two temperature has been depicted on the displacement component, Temperature distribution, stress component, phase velocity, and attenuation coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\({e}_{ij}\) :

Strain tensors

\(\overrightarrow{u}\) :

Displacement vector

\({K}_{ij}^{*}\) :

Materialistic constant

\({\alpha }_{ij}\) :

Linear thermal expansion coefficient

\(\delta \left(t\right)\) :

Dirac’s delta function

\(2\Omega \times \dot{u}\) :

Coriolis acceleration

\({\tau }_{0}\) :

Relaxation time

\({t}_{ij}\) :

Stress tensors

\({\delta }_{ij}\) :

Kronecker delta

\({u}_{i}\) :

Components of displacement

\({a}_{ij}\) :

Two temperature parameters

\({C}_{E}\) :

Specific heat

\(\xi \) :

Wavenumber

\({\beta }_{ij}\) :

Thermal elastic coupling tensor

\(\omega \) :

Angular frequency

\({\varvec{\Omega}}\) :

Angular velocity of the solid and equal to \(\Omega {\varvec{n}}\), where n is a unit vector

\({C}_{ijkl}\) :

Elastic parameters

\({F}_{i}\) :

Components of Lorentz force

\(\varphi \) :

Conductive temperature

\({\varepsilon }_{0}\) :

Electric permeability

\({T}_{0}\) :

Reference temperature

\(T\) :

Absolute temperature

\({C}_{1}\) :

Longitudinal wave velocity

\(\rho \) :

Medium density

References

  1. Stoneley, R.: Elastic waves at the surface of separation of two solids. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character. 106, 416–428 (1924). https://doi.org/10.1098/rspa.1924.0079

  2. Scholte, J.G.: The range of existence of Rayleigh and Stoneley waves. Geophys. J. Int. 5, 120–126 (1947). https://doi.org/10.1111/j.1365-246X.1947.tb00347.x

    Article  MathSciNet  MATH  Google Scholar 

  3. Tajuddin, M.: Existence of Stoneley waves at an unbounded interface between two micropolar elastic half spaces. J. Appl. Mech. 62, 255–257 (1995)

    Article  MATH  Google Scholar 

  4. Kumar, R., Devi, S., Abo-Dahab, S.M.: Stoneley waves at the boundary surface of modified couple stress generalized thermoelastic with mass diffusion. J. Appl. Sci. Eng. 21, 1–8 (2018). https://doi.org/10.6180/jase.201803_21(1).0001

    Article  Google Scholar 

  5. Ting, T.C.T.: Surface waves in a rotating anisotropic elastic half-space. Wave Motion 40, 329–346 (2004). https://doi.org/10.1016/j.wavemoti.2003.10.005

    Article  MathSciNet  MATH  Google Scholar 

  6. Abo-Dahab, S.M.: Surface waves in coupled and generalized thermoelasticity. In: Encyclopedia of Thermal Stresses. pp. 4764–4774. Springer Netherlands, Dordrecht (2014)

  7. Abo-Dahab, S.: Propagation of Stoneley waves in magneto-thermoelastic materials with voids and two relaxation times. J. Vib. Control. 21, 1144–1153 (2015). https://doi.org/10.1177/1077546313493651

    Article  MathSciNet  Google Scholar 

  8. Kumar, R., Sharma, N., Lata, P., Marin, M.: Reflection of plane waves at micropolar piezothermoelastic half-space. Comput. Methods Sci. Technol. 24, 113–124 (2018). https://doi.org/10.12921/cmst.2016.0000069

    Article  Google Scholar 

  9. Abd-Alla, A.M., Abo-Dahab, S.M., Khan, A.: Rotational effect on thermoelastic Stoneley, Love and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order. Struct. Eng. Mech. 61, 221–230 (2017). https://doi.org/10.12989/sem.2017.61.2.221

    Article  Google Scholar 

  10. Singh, S., Tochhawng, L.: Stoneley and Rayleigh waves in thermoelastic materials with voids. J. Vib. Control. 25, 2053–2062 (2019). https://doi.org/10.1177/1077546319847850

    Article  MathSciNet  Google Scholar 

  11. Kaur, I., Lata, P.: Stoneley wave propagation in transversely isotropic thermoelastic medium with two temperature and rotation. GEM Int. J. Geomath. 11, 1–17 (2020). https://doi.org/10.1007/s13137-020-0140-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Lata, P., Himanshi: Stoneley wave propagation in an orthotropic thermoelastic media with fractional order theory. Compos. Mater. Eng. 3, 57 (2021)

  13. Kaur, I., Lata, P., Singh, K.: Reflection of plane harmonic wave in rotating media with fractional order heat transfer and two temperature. Partial Differ. Equ. Appl. Math. 4, 100049 (2021). https://doi.org/10.1016/J.PADIFF.2021.100049

    Article  Google Scholar 

  14. Lata, P., Kaur, I., Singh, K.: Reflection of plane harmonic wave in transversely isotropic magneto-thermoelastic with two temperature, rotation and multi-dual-phase lag heat transfer. (2021)

  15. Kaur, I., Singh, K.: Plane wave in non-local semiconducting rotating media with Hall effect and three-phase lag fractional order heat transfer. Int. J. Mech. Mater. Eng. 16, 1–16 (2021). https://doi.org/10.1186/S40712-021-00137-3/FIGURES/16

    Article  Google Scholar 

  16. Lata, P., Kaur, I., Singh, K.: Propagation of plane wave in transversely isotropic magneto-thermoelastic material with multi-dual-phase lag and two temperature. Coupled Syst. Mech. 9, 411–432 (2020). https://doi.org/10.12989/csm.2020.9.5.411

    Article  Google Scholar 

  17. Wang, J.-L., Li, H.-F.: Surpassing the fractional derivative: Concept of the memory-dependent derivative. Comput. Math. Appl. 62, 1562–1567 (2011). https://doi.org/10.1016/j.camwa.2011.04.028

    Article  MathSciNet  MATH  Google Scholar 

  18. Yu, Y.-J., Hu, W., Tian, X.-G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123–134 (2014). https://doi.org/10.1016/j.ijengsci.2014.04.014

    Article  MathSciNet  MATH  Google Scholar 

  19. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Generalized thermo-viscoelasticity with memory-dependent derivatives. Int. J. Mech. Sci. 89, 470–475 (2014). https://doi.org/10.1016/j.ijmecsci.2014.10.006

    Article  Google Scholar 

  20. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: A novel magneto-thermoelasticity theory with memory-dependent derivative. J. Electromagn. Waves Appl. 29, 1018–1031 (2015). https://doi.org/10.1080/09205071.2015.1027795

    Article  Google Scholar 

  21. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Generalized thermoelasticity with memory-dependent derivatives involving two temperatures. Mech. Adv. Mater. Struct. 23, 545–553 (2016). https://doi.org/10.1080/15376494.2015.1007189

    Article  Google Scholar 

  22. Ezzat, M.A., El Karamany, A.S., El-Bary, A.A.: Thermoelectric viscoelastic materials with memory-dependent derivative. Smart Struct. Syst. 19, 539–551 (2017). https://doi.org/10.12989/sss.2017.19.5.539

    Article  Google Scholar 

  23. Kaur, I., Lata, P., Singh, K.: Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures. Int. J. Mech. Mater. Eng. (2020). https://doi.org/10.1186/s40712-020-00122-2

    Article  MATH  Google Scholar 

  24. Kaur, I., Lata, P., Singh, K.: Reflection and refraction of plane wave in piezo-thermoelastic diffusive half spaces with three phase lag memory dependent derivative and two-temperature. Waves Random Complex Media (2020). https://doi.org/10.1080/17455030.2020.1856451

    Article  MATH  Google Scholar 

  25. Kaur, I., Lata, P., Singh, K.: Effect of memory dependent derivative on forced transverse vibrations in transversely isotropic thermoelastic cantilever nano-Beam with two temperature. Appl. Math. Model. 88, 83–105 (2020). https://doi.org/10.1016/j.apm.2020.06.045

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaur, I., Lata, P., Handa, K.: Effects of Memory Dependent Derivative of Bio-heat Model in Skin Tissue exposed to Laser Radiation. EAI Endorsed Trans. Pervasive Heal. Technol. 6, 164589 (2020). https://doi.org/10.4108/eai.13-7-2018.164589

  27. Marin, M.: On weak solutions in elasticity of dipolar bodies with voids. J. Comput. Appl. Math. 82, 291–297 (1997). https://doi.org/10.1016/S0377-0427(97)00047-2

    Article  MathSciNet  MATH  Google Scholar 

  28. Golewski, G.L.: Fracture performance of cementitious composites based on quaternary blended cements. Materials (Basel). 15, 6023 (2022). https://doi.org/10.3390/ma15176023

  29. Marin, M., Öchsner, A., Craciun, E.M.: A generalization of the Saint-Venant’s principle for an elastic body with dipolar structure. Contin. Mech. Thermodyn. 32, 269–278 (2020). https://doi.org/10.1007/s00161-019-00827-6

    Article  MathSciNet  MATH  Google Scholar 

  30. Marin, M., Öchsner, A., Craciun, E.M.: A generalization of the Gurtin’s variational principle in thermoelasticity without energy dissipation of dipolar bodies. Contin. Mech. Thermodyn. 32, 1685–1694 (2020). https://doi.org/10.1007/s00161-020-00873-5

    Article  MathSciNet  Google Scholar 

  31. Kaur, I., Singh, K., Ghita, G.M.D.: New analytical method for dynamic response of thermoelastic damping in simply supported generalized piezothermoelastic nanobeam. ZAMM - J. Appl. Math. Mech. / Zeitschrift für Angew. Math. und Mech. 101, (2021). https://doi.org/10.1002/zamm.202100108

  32. Golewski, G.L.: Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of C-S-H phase. Struct. Eng. Mech. 82 (2022). https://doi.org/10.12989/sem.2022.82.4.543

  33. Golewski, G.L.: On the special construction and materials conditions reducing the negative impact of vibrations on concrete structures. Mater. Today Proc. 45, 4344–4348 (2021). https://doi.org/10.1016/j.matpr.2021.01.031

    Article  Google Scholar 

  34. Trivedi, N., Das, S., Craciun, E.-M.: The mathematical study of an edge crack in two different specified models under time-harmonic wave disturbance. Mech. Compos. Mater. 58, 1–14 (2022). https://doi.org/10.1007/s11029-022-10007-4

    Article  Google Scholar 

  35. Zhang, P., Han, S., Golewski, G.L., Wang, X.: Nanoparticle-reinforced building materials with applications in civil engineering. Adv. Mech. Eng. 12, 168781402096543 (2020). https://doi.org/10.1177/1687814020965438

    Article  Google Scholar 

  36. Sur, A., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate. Thin-Walled Struct. (2018). https://doi.org/10.1016/j.tws.2017.05.005

    Article  Google Scholar 

  37. Golewski, G.L.: An extensive investigations on fracture parameters of concretes based on quaternary binders (QBC) by means of the DIC technique. Constr. Build. Mater. 351, 128823 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128823

  38. Golewski, G.L.: Comparative measurements of fracture toughgness combined with visual analysis of cracks propagation using the DIC technique of concretes based on cement matrix with a highly diversified composition. Theor. Appl. Fract. Mech. 121, 103553 (2022). https://doi.org/10.1016/j.tafmec.2022.103553

  39. Gupta, S., Das, S., Dutta, R., Verma, A.K.: Higher-order fractional and memory response in nonlocal double poro-magneto-thermoelastic medium with temperature-dependent properties excited by laser pulse. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.04.013

    Article  Google Scholar 

  40. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998). https://doi.org/10.1115/1.3098984

    Article  Google Scholar 

  41. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15, 253–264 (1992). https://doi.org/10.1080/01495739208946136

    Article  MathSciNet  Google Scholar 

  42. Schoenberg, M., Censor, D.: Elastic waves in rotating media. Q. Appl. Math. 31, 115–125 (1973). https://doi.org/10.1090/qam/99708

    Article  MATH  Google Scholar 

  43. Youssef, H.M.: Theory of two-temperature thermoelasticity without energy dissipation. J. Therm. Stress. 34, 138–146 (2011). https://doi.org/10.1080/01495739.2010.511941

    Article  Google Scholar 

  44. Bachher, M.: Plane harmonic waves in thermoelastic materials with a memory-dependent derivative. J. Appl. Mech. Tech. Phys. 60, 123–131 (2019). https://doi.org/10.1134/S0021894419010152

    Article  MathSciNet  MATH  Google Scholar 

  45. Slaughter, W.S.: The Linearized Theory of Elasticity. Birkhäuser Boston, Boston (2002)

    Book  MATH  Google Scholar 

  46. Kumar, R., Sharma, N., Lata, P., Abo-Dahab, S.M.: Mathematical modelling of Stoneley wave in a transversely isotropic thermoelastic media. 177005, 78–103 (2010)

Download references

Acknowledgments

Not applicable.

Funding

No fund/grant/scholarship has been taken for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, I., Singh, K. Stoneley wave propagation in transversely isotropic thermoelastic rotating medium with memory-dependent derivative and two temperature. Arch Appl Mech 93, 3313–3325 (2023). https://doi.org/10.1007/s00419-023-02440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02440-1

Keywords

Navigation