Skip to main content
Log in

A mesh-free homotopic RPIM approach to simulate the two-dimensional material mixing during the FSW process

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We propose in this work a high-order homotopic approach to simulate the material mixing during the FSW process. The technicality of the present approach is based on the coupling of RPIM, a temporal discretization, a homotopic transformation, a development in Taylor series and a continuation method. The formulation of the problem in strong form is based on the conservation equations of mass and momentum. The goal of this modeling is to minimize the number of inversions of the tangent matrices required by the iterative incremental methods. Indeed, a comparison of the results obtained via this algorithm will be made with those obtained by an iterative incremental method in order to verify the applicability of the proposed algorithm. The use of RPIM permits us to introduce exactly the boundary conditions around the tool of FSW process unlike the approximant meshless methods such as MLS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data necessary to reproduce these results are obtained using an in-house code under Matlab. Interested researchers can contact the authors for any help.

References

  1. Thomas, W. M., Nicholas, E. D., Needham, J. C., Church, M. G., Templesmith, P., Dawes, C.: Friction stir butt welding. In: International Patent Application no. PCT/GB92/02203 and GB Patent Application no. 9125978.8 (1991)

  2. Thomas, W.M., Nicholas, E.D.: Friction stir welding for the transportation industries. Mater. Des. 18, 269–273 (1997)

    Article  Google Scholar 

  3. Alfaro, I., Racineux, G., Poitou, A., Cueto, E., Chinesta, F.: Numerical simulation of friction stir welding by natural element methods. Int. J. Mater. Form. 1, 1079–1082 (2008)

    Article  Google Scholar 

  4. Buffa, G., Hua, J., Shivpuri, R., Fratini, L.: Design of the friction stir welding tool using the continuum based FEM model. Acta Mater. 419, 381–388 (2006)

    Google Scholar 

  5. Balokhonov, R.R., Romanova, V.A., Martynov, S.A., Zinoviev, A.V., Zinovieva, O.S., Batukhtina, E.E.: A computational study of the microstructural effect on the deformation and fracture of friction stir welded aluminum. Comput. Mater. Sci. 116, 2–10 (2016)

    Article  Google Scholar 

  6. Buffa, G., Hua, J., Shivpuri, R., Fratini, L.: Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints. Mater. Sci. Eng. 58, 2056–2067 (2010)

    Google Scholar 

  7. Hirasawa, S., Badarinarayan, H., Okamoto, K., Tomimura, T., Kawanami, T.: Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. J. Mater. Process. Technol. 11, 1455–1463 (2010)

    Article  Google Scholar 

  8. Chao, Y.J., Qi, X., Tang, W.: Heat transfer in friction stir welding-experimental and numerical studies. J. Manuf. Sci. Eng. 125(1), 138–145 (2003)

    Article  Google Scholar 

  9. Gök, K., Aydin, M.: Investigations of friction stir welding process using finite element method. Int. J. Adv. Manuf. Technol. 68, 775–780 (2013)

    Article  Google Scholar 

  10. Sadeghi, S., Najafabadi, M.A., Javadi, Y., Mohammadisefat, M.: Using ultrasonic waves and finite element method to evaluate through-thickness residual stresses distribution in the friction stir welding of aluminum plates. Mater. Des. (1980–2015) 52, 870–880 (2013)

    Article  Google Scholar 

  11. Tongne, A., Desrayaud, C., Jahazi, M., Feulvarch, E.: On material flow in friction stir welded Al alloys. J. Mater. Process. Technol. 239, 284–296 (2017)

    Article  Google Scholar 

  12. Neto, D.M., Neto, P.: Numerical modeling of friction stir welding process: a literature review. Int. J. Adv. Manuf. Technol. 65, 115–126 (2013)

    Article  Google Scholar 

  13. Song, M., Kovacevic, R.: Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int. J. Mach. Tools Manuf. 43(6), 605–615 (2003)

    Article  Google Scholar 

  14. He, X., Gu, F., Ball, A.: A review of numerical analysis of friction stir welding. Prog. Mater. Sci. 65, 1–66 (2014)

    Article  Google Scholar 

  15. Eskandari, Z., Avazzadeh, Z., Khoshsiar Ghaziani, R., Li, B.: Dynamics and bifurcations of a discrete-time Lotka–Volterra model using nonstandard finite difference discretization method. Math. Methods Appl. Sci. (2022)

  16. Xiao, Y., Zhan, H., Gu, Y., Li, Q.: Modeling heat transfer during friction stir welding using a meshless particle method. Int. J. Heat Mass Transf. 104, 288–300 (2017)

    Article  Google Scholar 

  17. Talebi, H., Froend, M., Klusemann, B.: Application of adaptive element-free Galerkin method to simulate friction stir welding of aluminum. Proc. Eng. 207, 580–585 (2017)

    Article  Google Scholar 

  18. Smolin, A.Y., Shilko, E., Astafurov, S., Kolubaev, E., Eremina, G., Psakhie, S.: Understanding the mechanisms of friction stir welding based on computer simulation using particles. Def. Technol. 14(6), 643–656 (2018)

    Article  Google Scholar 

  19. Hirasawa, S., Badarinarayan, H., Okamoto, K., Tomimura, T., Kawanami, T.: Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. J. Mater. Process. Technol. 210(11), 1455–1463 (2010)

    Article  Google Scholar 

  20. Pan, W., Li, D., Tartakovsky, A.M., Ahzi, S., Khraisheh, M., Khaleel, M.: A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy. Int. J. Plast. 48, 189–204 (2013)

    Article  Google Scholar 

  21. Nikan, O., Avazzadeh, Z., Machado, J.T.: Numerical treatment of microscale heat transfer processes arising in thin films of metals. Int. Commun. Heat Mass Transf. 132, 105892 (2022)

    Article  Google Scholar 

  22. Nikan, O., Avazzadeh, Z.: Coupling of the Crank–Nicolson scheme and localized meshless technique for viscoelastic wave model in fluid flow. J. Comput. Appl. Math. 398, 113695 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nikan, O., Avazzadeh, Z.: A localisation technique based on radial basis function partition of unity for solving Sobolev equation arising in fluid dynamics. Appl. Math. Comput. 401, 126063 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Nikan, O., Avazzadeh, Z., Machado, J.T.: Numerical approximation of the nonlinear time-fractional telegraph equation arising in neutron transport. Commun. Nonlinear Sci. Numer. Simul. 99, 105755 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mesmoudi, S., Askour, O., Braikat, B.: Radial point interpolation method and high-order continuation for solving nonlinear transient heat conduction problems. Comptes Rendus. Mécanique 348(8–9), 745–758 (2020)

    Article  MATH  Google Scholar 

  26. Rammane, M., Mesmoudi, S., Tri, A., Braikat, B., Damil, N.: A dimensionless numerical mesh-free model for the compressible fluid flows. Comput. Fluids 221, 104845 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mesmoudi, S., Askour, O., Rammane, M., Bourihane, O., Tri, A., Braikat, B.: Spectral Chebyshev method coupled with a high order continuation for nonlinear bending and buckling analysis of functionally graded sandwich beams. Int. J. Numer. Methods Eng. 123(24), 6111–6126 (2022)

    Article  MathSciNet  Google Scholar 

  28. Drissi, M., Mansouri, M., Mesmoudi, S., Saadouni, K.: On the use of a pseudo-spectral method in the asymptotic numerical method for the resolution of the Ginzburg–Landau envelope equation. Eng. Struct. 262, 114236 (2022)

    Article  Google Scholar 

  29. Rammane, M., Mesmoudi, S., Tri, A., Braikat, B., Damil, N.: Bifurcation points and bifurcated branches in fluids mechanics by high-order mesh-free geometric progression algorithms. Int. J. Numer. Methods Fluids 93(3), 834–852 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rammane, M., Mesmoudi, S., Tri, A., Braikat, B., Damil, N.: Mesh-free model for Hopf’s bifurcation points in incompressible fluid flows problems. Int. J. Numer. Methods Fluids 94(9), 1566–1581 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, G.-R., Gu, Y.-T.: An Introduction to Meshfree Methods and Their Programming. Springer Science & Business Media (2005)

  32. Nikan, O., Avazzadeh, Z., Machado, J.T., Rasoulizadeh, M.: An accurate localized meshfree collocation technique for the telegraph equation in propagation of electrical signals. Eng. Comput. 1–18 (2022)

  33. Nikan, O., Avazzadeh, Z.: A locally stabilized radial basis function partition of unity technique for the sine-Gordon system in nonlinear optics. Math. Comput. Simul. 199, 394–413 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rasoulizadeh, M., Nikan, O., Avazzadeh, Z.: The impact of LRBF-FD on the solutions of the nonlinear regularized long wave equation. Math. Sci. 15(4), 365–376 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rasoulizadeh, M., Ebadi, M., Avazzadeh, Z., Nikan, O.: An efficient local meshless method for the equal width equation in fluid mechanics. Eng. Anal. Bound. Elem. 131, 258–268 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chu, F., Wang, L., Zhong, Z., He, J.: Hermite radial basis collocation method for vibration of functionally graded plates with in-plane material inhomogeneity. Comput. Struct. 142, 79–89 (2014)

    Article  Google Scholar 

  37. Zhang, X., Song, K.Z., Lu, M.W., Liu, X.: Meshless methods based on collocation with radial basis functions. Comput. Mech. 26, 333–343 (2000)

    Article  MATH  Google Scholar 

  38. Askour, O., Tri, A., Braikat, B., Zahrouni, H., Potier-Ferry, M.: Method of fundamental solutions and high order algorithm to solve nonlinear elastic problems. Eng. Anal. Bound. Elem. 89, 25–35 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Askour, O., Mesmoudi, S., Tri, A., Braikat, B., Zahrouni, H., Potier-Ferry, M.: Method of fundamental solutions and a high order continuation for bifurcation analysis within Föppl–von Karman plate theory. Eng. Anal. Bound. Elem. 120, 67–72 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Askour, O., Mesmoudi, S., Braikat, B.: On the use of Radial Point Interpolation Method (RPIM) in a high order continuation for the resolution of the geometrically nonlinear elasticity problems. Eng. Anal. Bound. Elem. 110, 69–79 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bourihane, O., Braikat, B., Jamal, M., Mohri, F., Damil, N.: Dynamic analysis of a thin-walled beam with open cross section subjected to dynamic loads using a high-order implicit algorithm. Eng. Struct. 120, 133–146 (2016)

    Article  Google Scholar 

  42. Jamal, M., Braikat, B., Boutmir, S., Damil, N., Potier-Ferry, M.: A high order implicit algorithm for solving instationary non-linear problems. Comput. Mech. 28, 375–380 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, C., Liu, J.: Positivity property of second-order flux-splitting schemes for the compressible Euler equations. Discrete Contin. Dyn. Syst. Ser. B 3(2), 201–228 (2003)

    MathSciNet  MATH  Google Scholar 

  44. Estivalezes, J.-L., Villedieu, P.: A new second order positivity preserving kinetic schemes for the compressible Euler equations. In: Fourteenth International Conference on Numerical Methods in Fluid Dynamics: Proceedings of the Conference Held in Bangalore, India, 11–15 July 1994, pp. 96–100. Springer (2005)

  45. Huang, F., Marcati, P., Pan, R.: Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum. Arch. Ration. Mech. Anal. 176, 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kansa, E.: Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8), 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Singh, J., Shukla, K.: Nonlinear flexural analysis of laminated composite plates using RBF based meshless method. Compos. Struct. 94(5), 1714–1720 (2012)

    Article  Google Scholar 

  48. Singh, J., Shukla, K.: Nonlinear flexural analysis of functionally graded plates under different loadings using RBF based meshless method. Eng. Anal. Bound. Elem. 36(12), 1819–1827 (2012)

    Article  MATH  Google Scholar 

  49. Fasshauer, G.E., Zhang, J.G.: On choosing “optimal’’ shape parameters for RBF approximation. Numer. Algorithms 45(1), 345–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kuo, L.-H.: On the Selection of a Good Shape Parameter for RBF Approximation and Its Application for Solving PDEs. The University of Southern Mississippi (2015)

  51. Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11(2), 193–210 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wendland, H.: Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J. Approx. Theory 93(2), 258–272 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Cochelin, B.: A path-following technique via an asymptotic-numerical method. Comput. Struct. 53(5), 1181–1192 (1994)

    Article  MATH  Google Scholar 

  54. Timesli, A., Braikat, B., Lahmam, H., Zahrouni, H.: A new algorithm based on moving least square method to simulate material mixing in friction stir welding. Eng. Anal. Bound. Elem. 50, 372–380 (2015)

    Article  Google Scholar 

  55. Mesmoudi, S., Timesli, A., Braikat, B., Lahmam, H., Zahrouni, H.: A 2D mechanical-thermal coupled model to simulate material mixing observed in friction stir welding process. Eng. Comput. 33(4), 885–895 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Mesmoudi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests for the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesmoudi, S., Rammane, M., Hilali, Y. et al. A mesh-free homotopic RPIM approach to simulate the two-dimensional material mixing during the FSW process. Arch Appl Mech 93, 3297–3311 (2023). https://doi.org/10.1007/s00419-023-02439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02439-8

Keywords

Navigation