Skip to main content
Log in

One dimensional transient thermoelastic and associated fracture analysis of long porous ceramic plate

  • Technical Notes
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Asymmetric thermal shock resistance of porous ceramic materials has been studied. The plate, initially at uniform temperature, is exposed to a sudden temperature on its one surface whilst thermal insulation are considered for the opposing face. The temperature field and transient thermal stress field in the porous ceramic plate uncracking are calculated. Then, the weight function method is used to obtain thermal stress intensity factor at crack tip. The effects of relative density and thermal shock temperature on the crack propagation of the porous ceramic plate are analyzed. Finally, the thermal shock resistance of the porous ceramic materials is acquired based on stress criterion and fracture toughness criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Rezaee, S., Ranjbar, K.: Thermal conductivity of porous Alumina-20 wt% zirconia ceramic composites. Ceram. Int. 46, 16564–16571 (2020)

    Article  Google Scholar 

  2. Li, D.Y., Li, W.G., Wang, R.Z., et al.: Simulation of the thermal shock behavior of ultra-high temperature ceramics with the consideration of temperature-dependent crack propagation criterion and interaction between thermal shock cracks evolution and thermal conduction. Eur. J. Mech. A-Solid. 72, 268–274 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, Y., Chen, Z.F., Yu, S.J., et al.: Improved sandwich structure ceramic matrix composites with excellent thermal insulation. Compos. Part B-Eng. 129, 180–186 (2017)

    Article  Google Scholar 

  4. Li, Z., Wang, B.L., Guo, S.L., et al.: Thermal shock resistance of ceramic foam sandwich structures: theoretical calculation and finite element simulation. Int. J. Solids Struct. 176–177, 108–120 (2019)

    Article  Google Scholar 

  5. Dam, C.Q., Brezny, R., Green, D.J.: Compressive behavior and deformation-mode map of an open cell alumina. J. Mater. Res. 5, 163–171 (1990)

    Article  Google Scholar 

  6. Maslak, A.T., Alibeigloo, A.: Three-dimensional transient analysis of FGM rectangular sandwich plate subjected to thermal loading using state space differential quadrature method. Int. J. Appl. Mech. 13, 2150118 (2021)

    Article  Google Scholar 

  7. Hetnarski, R.B., Eslami, M.R.: Thermal stresses-advanced theory and applications, pp. 106, ISBN: 978-3-030-10436-8 (2019)

  8. Belghalem, H., Hamidouche, M., Gremillard, L., et al.: Thermal shock resistance of two micro-structured alumina obtained by natural sintering and SPS. Ceram. Int. 40, 619–627 (2014)

    Article  Google Scholar 

  9. Ding, S.Q., Zeng, Y.P., Jiang, D.L.: Thermal shock resistance of in situ reaction bonded porous silicon carbide ceramics. Mat. Sci. Eng. A 425, 326–329 (2006)

    Article  Google Scholar 

  10. Wu, L.H., Li, C.W., Li, H., et al.: Preparation and characteristics of porous anorthite ceramics with high porosity and high-temperature strength. Int. J. Appl. Ceram. Technol. 17, 963–973 (2020)

    Article  Google Scholar 

  11. Jin, X.X., Dong, L.M., Xu, H.Y., et al.: Effects of porosity and pore size on mechanical and thermal properties as well as thermal shock fracture resistance of porous ZrB2–SiC ceramics. Ceram. Int. 42, 9051–9057 (2016)

    Article  Google Scholar 

  12. Yuan, C., Vandeperre, L.J., Stearn, R.J., et al.: The effect of porosity in thermal shock. J. Mater. Sci. 43, 4099–4106 (2008)

    Article  Google Scholar 

  13. Ahmadi, G., Shahinpoor, M.: A continuum theory for fully saturated porous elastic materials. Int. J. Nonlinear Mech. 18, 223–234 (1983)

    Article  MATH  Google Scholar 

  14. Bouguerra, A.: Prediction of effective thermal conductivity of moist wood concrete. J. Phys. D: Appl. Ohys. 32, 1407–1414 (1999)

    Article  Google Scholar 

  15. Zhang, Y.X., Wang, B.L., Li, J.E.: The thermal shock resistance analysis of ceramic foams. J. Am. Ceram. Soc. 96, 2615–2622 (2013)

    Article  Google Scholar 

  16. Vedula, V.R., Green, D.J., Hellman, J.R.: Thermal shock resistance of ceramic foams. J. Am. Ceram. Soc. 82, 649–656 (1999)

    Article  Google Scholar 

  17. Efimov, K.N., Ovchinnikov, V.A., Yakimov, A.S., et al.: Modeling of thermal protection system based on thermionic technology. J. Thermophys. Heat Transf. 34, 1–8 (2020)

    Article  Google Scholar 

  18. Lu, T.J., Fleck, N.A.: The thermal shock resistance of solids. Acta Mater. 46, 4755–4768 (1998)

    Article  Google Scholar 

  19. Gong, L.L., Wang, Y.H., Cheng, X.D., et al.: Thermal conductivity of highly porous mullite materials. Int. J. Heat Mass Transf. 67, 253–259 (2013)

    Article  Google Scholar 

  20. Lo, Y.W., Wei, W.C.J., Hsueh, C.H.: Low thermal conductivity of porous Al2O3 foams for SOFC insulation. Mater. Chem. Phys. 129, 326–330 (2011)

    Article  Google Scholar 

  21. Zhang, J., Ashby, M.F.: Theoretical Studies on Isotropic Foams. Cambridge University Publication, Cambridge (1989)

    Google Scholar 

  22. Tada, H., Pairs, P.C., Irwin, G.R.: The Stress Analysis of Cracks Handbook, pp. 71–77. ASME Press, New York (2000)

    Book  Google Scholar 

  23. Morgan, J.S., Wood, J.L., Bradt, R.C.: Cell size effects on the strength of foamed glass. Mater. Sci. Eng. 47, 37–42 (1981)

    Article  Google Scholar 

  24. Zhang, Y.X., Wang, B.L.: Thermal shock resistance analysis of a semi-infinite ceramic foam. Int. J. Eng. Sci. 62, 22–30 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Science and Technology Project of Hebei Education Department (Grant No. QN2020140), the Natural Science Foundation of Hebei Province of China (Grant No. A2021408004), and the doctoral program of Langfang normal university (Grant No. LSLB201601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxia Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The dimensionless function \(G\left( {\frac{2H - z}{a},\;\frac{a}{2H}} \right)\) appearing in Eq. (13) is

$$ \begin{aligned} G\left( {\frac{2H - z}{a},\;\frac{a}{2H}} \right) = & f_{1} \left( \frac{a}{2H} \right) + f_{2} \left( \frac{a}{2H} \right)\left( {\frac{2H - z}{a}} \right) \\ & + f_{3} \left( \frac{a}{2H} \right)\left( {\frac{2H - z}{a}} \right)^{2} + f_{4} \left( \frac{a}{2H} \right)\left( {\frac{2H - z}{a}} \right)^{3} \\ \end{aligned} $$
(A1)

where

$$ f_{1} \left( \frac{a}{2H} \right) = 0.46 + 3.06\left( \frac{a}{2H} \right) + 0.84\left( {1 - \frac{a}{2H}} \right)^{5} + 0.66\left( \frac{a}{2H} \right)^{2} \left( {1 - \frac{a}{2H}} \right)^{2} $$
$$ f_{2} \left( \frac{a}{2H} \right) = - 3.52\left( \frac{a}{2H} \right)^{2} $$
$$ \begin{aligned} f_{3} \left( \frac{a}{2H} \right) = & 6.17 - 28.22\left( \frac{a}{2H} \right) + 34.54\left( \frac{a}{2H} \right)^{2} - 14.39\left( \frac{a}{2H} \right)^{3} \\ & { - }\left( {1 - \frac{a}{2H}} \right)^{1.5} - 5.88\left( {1 - \frac{a}{2H}} \right)^{5} - 2.64\left( \frac{a}{2H} \right)^{2} \left( {1 - \frac{a}{2H}} \right)^{2} \\ \end{aligned} $$
$$ \begin{aligned} f_{4} \left( \frac{a}{2H} \right) = & - 6.63 + 25.16\left( \frac{a}{2H} \right) - 31.04\left( \frac{a}{2H} \right)^{2} + 14.41\left( \frac{a}{2H} \right)^{3} + 2\left( {1 - \frac{a}{2H}} \right)^{1.5} \\ & + 5.04\left( {1 - \frac{a}{2H}} \right)^{5} + 1.98\left( \frac{a}{2H} \right)^{2} \left( {1 - \frac{a}{2H}} \right)^{2} \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, B., Zhang, C. et al. One dimensional transient thermoelastic and associated fracture analysis of long porous ceramic plate. Arch Appl Mech 93, 2681–2692 (2023). https://doi.org/10.1007/s00419-023-02426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02426-z

Keywords

Navigation