Skip to main content

Advertisement

Log in

A nonlinear finite element method for analyzing the bending behavior of functionally graded shape memory alloys under the loading process

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on the Euler–Bernoulli beam element theory, a nonlinear finite element method is proposed to solve the mechanical response of functionally graded shape memory alloys (FG-SMAs) three-point bending beam considering the tension–compression asymmetry under the loading process. The Auricchio’s shape memory alloy (SMA) constitutive model was used to describe the phase transformation relationship of SMA. The constitutive model of the power exponent distribution law of FG-SMA was developed by using the theory of composite mechanics. Using the virtual work principle, the bending beam equilibrium equation of FG-SMA was developed. The finite element method and Newton–Raphson method were used to solve the equilibrium equation of the three-point bending beam of FG-SMA. The accuracy of the proposed method was verified by comparing the present results obtained by the nonlinear finite element method with the existing literature. Then three-point bending beam analysis of FG-SMA was carried out. The results show that the increase in the graded index and tensile asymmetry coefficient increases the stiffness of the beam. When the SMA enters phase transformation, the increase in temperature will reduce the deflection of the beam. In addition, the strain variation in the mid-span section near pure shape memory alloy layer is more obvious than that near pure ceramic layer due to temperature. The compressive axial load is more likely to cause beam bending than tensile axial load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Boyd, J.G., Lagoudas, D.C.: A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int. J. Plast. 12(6), 805–842 (1996)

    Article  MATH  Google Scholar 

  2. Jani, J.M., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. (1980–2015) 56, 1078–1113 (2014)

    Article  Google Scholar 

  3. Krulevitch, P., Lee, A.P., Ramsey, P.B., Trevino, J.C., Hamilton, J., Northrup, M.A.: Thin film shape memory alloy microactuators. J. Microelectromech. Syst. 5(4), 270–282 (1996)

    Article  Google Scholar 

  4. Liang, C., Rogers, C.: Design of shape memory alloy springs with applications in vibration control. J. Vib. Acoust. 115(1), 129-135 (1993)

    Article  Google Scholar 

  5. Liu, B., Dui, G., Yang, S.: On the transformation behavior of functionally graded SMA composites subjected to thermal loading. Eur. J. Mech. A-Solids. 40, 139–147 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang, Y., Wu, Z., Shen, B., et al.: Graded functionality obtained in NiTi shape memory alloy via a repetitive laser processing strategy. J. Mater. Process. Technol. 296, 117177 (2021)

    Article  Google Scholar 

  7. Cole, D.P., Jin, H., Lu, W.-Y., Roytburd, A.L., Bruck, H.A.: Reversible nanoscale deformation in compositionally graded shape memory alloy films. Appl. Phys. Lett. 94(19), 193114 (2009)

    Article  Google Scholar 

  8. Meng, Q., Yang, H., Liu, Y., Nam, T.-H.: Compositionally graded NiTi plate prepared by diffusion annealing. Scr. Mater. 67(3), 305–308 (2012)

    Article  Google Scholar 

  9. Zhang, Y., Li, D., Zhang, X.: Gradient porosity and large pore size NiTi shape memory alloys. Scr. Mater. 57(11), 1020–1023 (2007)

    Article  Google Scholar 

  10. Sevilla, P., Martorell, F., Libenson, C., Planell, J., Gil, F.: Laser welding of NiTi orthodontic archwires for selective force application. J. Mater. Sci. Mater. Med. 19, 525–529 (2008)

    Article  Google Scholar 

  11. Zhou, B., Kang, Z., Ma, X., Xue, S.: On size-dependent bending behaviors of shape memory alloy microbeams via nonlocal strain gradient theory. J. Intell. Mater. Syst. Struct. 32(17), 2039–2053 (2021)

    Article  Google Scholar 

  12. Shariat, B.S., Bakhtiari, S., Yang, H., Liu, Y.: Controlled initiation and propagation of stress-induced martensitic transformation in functionally graded NiTi. J. Alloys Compd. 851, 156103 (2021)

    Article  Google Scholar 

  13. Fahimi, P., Hajarian, A., Eskandari, A.H., Taheri, A., Baghani, M.: Asymmetric bending response of shape memory alloy beam with functionally graded porosity. J. Intell. Mater. Syst. Struct. 31(16), 1935–1949 (2020)

    Article  Google Scholar 

  14. Shariat, B.S., Liu, Y., Bakhtiari, S.: Modelling and experimental investigation of geometrically graded shape memory alloys with parallel design configuration. J. Alloys Compd. 791, 711–721 (2019)

    Article  Google Scholar 

  15. Meng, Q., Liu, Y., Yang, H., Shariat, B.S., Nam, T.-H.: Functionally graded NiTi strips prepared by laser surface anneal. Acta Mater. 60(4), 1658–1668 (2012)

    Article  Google Scholar 

  16. Tanaka, K., Nagaki, S.: A thermomechanical description of materials with internal variables in the process of phase transitions. Ing. Arch. 51, 287–299 (1982)

    Article  MATH  Google Scholar 

  17. Auricchio, F., Sacco, E.: A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite. Int. J. Non-Linear Mech. 32(6), 1101–1114 (1997)

    Article  MATH  Google Scholar 

  18. Brinson, L.C.: One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 4(2), 229–242 (1993)

    Article  Google Scholar 

  19. Auricchio, F., Reali, A., Stefanelli, U.: A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties. Comput. Meth. Appl. Mech. Eng. 198(17–20), 1631–1637 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Souza, A.C., Mamiya, E.N., Zouain, N.: Three-dimensional model for solids undergoing stress-induced phase transformations. Eur. J. Mech. A Solids 17(5), 789–806 (1998)

    Article  MATH  Google Scholar 

  21. Zhou, B., Yoon, S.H.: A new phase transformation constitutive model of shape memory alloys. Smart Mater. Struct. 15(6), 1967–1973 (2006)

    Article  Google Scholar 

  22. Marfia, S., Rizzoni, R.: One-dimensional constitutive SMA model with two martensite variants: analytical and numerical solutions. Eur. J. Mech. A Solids 40, 166–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Viet, N.V., Zaki, W., Umer, R.: Analytical model for a superelastic SMA beam. Smart materials, adaptive structures and intelligent systems. Am. Soc. Mech. Eng. 58264, V002T03A011 (2017)

    Google Scholar 

  24. Mizzi, L., Spaggiari, A., Dragoni, E.: Design of shape memory alloy sandwich actuators: an analytical and numerical modelling approach. Smart Mater. Struct. 29(8), 085027 (2020)

    Article  Google Scholar 

  25. Radi, E.: Analytical modeling of the shape memory effect in SMA beams with rectangular cross section under reversed pure bending. J. Intell. Mater. Syst. Struct. 32(18–19), 2214–2230 (2021)

    Article  Google Scholar 

  26. Viet, N., Zaki, W., Umer, R.: Analytical investigation of an energy harvesting shape memory alloy–piezoelectric beam. Arch. Appl. Mech. 90, 2715–2738 (2020)

    Article  Google Scholar 

  27. Huang, Y., Li, L., Xu, Z., Li, C., Mao, K.: Free vibration analysis of functionally gradient sandwich composite plate embedded SMA wires in surface layer. Appl. Sci. 10(11), 3921 (2020)

    Article  Google Scholar 

  28. Sepiani, H., Ebrahimi, F., Karimipour, H.: A mathematical model for smart functionally graded beam integrated with shape memory alloy actuators. J. Mech. Sci. Technol. 23, 3179–3190 (2009)

    Article  Google Scholar 

  29. Shariat, B.S., Liu, Y., Rio, G.: Thermomechanical modelling of microstructurally graded shape memory alloys. J. Alloys Compd. 541, 407–414 (2012)

    Article  Google Scholar 

  30. Meng, Q., Liu, Y., Yang, H., Nam, T.-H.: Laser annealing of functionally graded NiTi thin plate. Scr. Mater. 65(12), 1109–1112 (2011)

    Article  Google Scholar 

  31. Mohri, M., Nili-Ahmadabadi, M.: Phase transformation and structure of functionally graded Ni–Ti bi-layer thin films with two-way shape memory effect. Sens. Actuators A 228, 151–158 (2015)

    Article  Google Scholar 

  32. Viet, N., Zaki, W., Wang, Q.: Free vibration characteristics of sectioned unidirectional/bidirectional functionally graded material cantilever beams based on finite element analysis. Appl. Math. Mech. 41, 1787–1804 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Merzouki, T., Collard, C., Bourgeois, N., Zineb, T.B., Meraghni, F.: Coupling between measured kinematic fields and multicrystal SMA finite element calculations. Mech. Mater. 42(1), 72–95 (2010)

    Article  Google Scholar 

  34. Cho, H., Rhee, J.: Nonlinear finite element analysis of shape memory alloy (SMA) wire reinforced hybrid laminate composite shells. Int. J. Non-Linear Mech. 47(6), 672–678 (2012)

    Article  Google Scholar 

  35. Wang, J., Moumni, Z., Zhang, W., Zaki, W.: A thermomechanically coupled finite deformation constitutive model for shape memory alloys based on Hencky strain. Int. J. Eng. Sci. 117, 51–77 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Abdollahzadeh, M., Hoseini, S.H., Faroughi, S.: Modeling of superelastic behavior of porous shape memory alloys. Int. J. Mech. Mater. Des. 16, 109–121 (2020)

    Article  Google Scholar 

  37. Hassanli, S., Samali, B.: Buckling analysis of laminated composite curved panels reinforced with linear and non-linear distribution of shape memory alloys. Thin-Walled Struct. 106, 9–17 (2016)

    Article  Google Scholar 

  38. Porenta, L., Lavrenčič, M., Dujc, J., Brojan, M., Tušek, J., Brank, B.: Modeling large deformations of thin-walled SMA structures by shell finite elements. Commun. Nonlinear Sci. Numer. Simul. 101, 105897 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Armattoe, K.M., Haboussi, M., Zineb, T.B.: A 2D finite element based on a nonlocal constitutive model describing localization and propagation of phase transformation in shape memory alloy thin structures. Int. J. Solids Struct. 51(6), 1208–1220 (2014)

    Article  Google Scholar 

  40. Samadi-Aghdam, K., Fahimi, P., Baniassadi, M., Baghani, M.: Development and implementation of a geometrically nonlinear beam theory model for SMA composite beams with asymmetric behavior. Compos. Struct. 259, 113417 (2021)

    Article  Google Scholar 

  41. Yang, S.-B., Xu, M.: Finite element analysis of 2D SMA beam bending. Acta Mech. Sin. 27, 738–748 (2011)

    Article  MATH  Google Scholar 

  42. Shokrgozar, M., Tizfahm, A., Mozaffari, A.: Finite element analysis of viscoelastic laminates embedded with shape-memory-alloy wires under low-velocity impact considering large deflection. Mech. Mater. 156, 103810 (2021)

    Article  Google Scholar 

  43. Viet, N.V., Zaki, W., Umer, R., Wang, Q.: Modeling the behavior of bilayer shape memory alloy/functionally graded material beams considering asymmetric shape memory alloy response. J. Intell. Mater. Syst. Struct. 31(1), 84–99 (2020)

    Article  Google Scholar 

  44. Lal, A., Shegokar, N.L., Singh, B.: Finite element based nonlinear dynamic response of elastically supported piezoelectric functionally graded beam subjected to moving load in thermal environment with random system properties. Appl. Math. Model. 44, 274–295 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Li, S., Wan, Z., Zhang, J.: Free vibration of functionally graded beams based on both classical and first-order shear deformation beam theories. Appl. Math. Mech. 35(5), 591–606 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lezgy-Nazargah, M., Vidal, P., Polit, O.: An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams. Compos. Struct. 104, 71–84 (2013)

    Article  Google Scholar 

  47. Liu, B., Yin, K., Zhang, F., Zhou, R.: On the behavior of functionally graded shape memory polymer composites under thermal coupling. J. Mech. 37, 311–317 (2021)

    Article  Google Scholar 

  48. Shariat, B., Liu, Y., Meng, Q., Rio, G.: Analytical modelling of functionally graded NiTi shape memory alloy plates under tensile loading and recovery of deformation upon heating. Acta Mater. 61(9), 3411–3421 (2013)

    Article  Google Scholar 

  49. Kang, Z., Wang, Z., Zhou, B., Xue, S.: Galerkin weighted residual method for axially functionally graded shape memory alloy beams. J. Mech. 36(3), 331–345 (2020)

    Article  Google Scholar 

  50. Auricchio, F.: A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model. Int. J. Plast. 17(7), 971–990 (2001)

    Article  MATH  Google Scholar 

  51. Xue, L., Dui, G., Liu, B.: Theoretical analysis of functionally graded shape memory alloy beam subjected to pure bending. J. Mech. Eng. 48, 40–45 (2012)

    Article  Google Scholar 

  52. Xue, L., Dui, G., Liu, B., Xin, L.: A phenomenological constitutive model for functionally graded porous shape memory alloy. J. Mech. Eng. Sci. 78, 103–113 (2014)

    Google Scholar 

  53. Liu, B., Dui, G., Zhu, Y.: On phase transformation behavior of porous shape memory alloys. J. Mech. Behav. Biomed. Mater. 5(1), 9–15 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Number 11872377, 11402309), the National Key Research and Development Plan (Grant Number 2016YFC0303700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Jia.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

All input parameters of the finite element model are shown in Table 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Jia, X., He, J. et al. A nonlinear finite element method for analyzing the bending behavior of functionally graded shape memory alloys under the loading process. Arch Appl Mech 93, 3051–3069 (2023). https://doi.org/10.1007/s00419-023-02424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02424-1

Keywords

Navigation