Skip to main content
Log in

Dislocation gliding in a freestanding film submitted to uniaxial stress

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The equilibrium positions of an edge dislocation embedded in a freestanding thin film submitted to uniaxial stress have been characterized from a Peach–Koehler force calculation. Depending on the inclination angle of the dislocation gliding plane with respect to the film horizontal axis, one stable and two unstable equilibrium positions have been first identified for the dislocation, when the film is stress-free. A critical angle has been also determined beyond which only one unstable equilibrium position remains. The effects of compressive and tensile applied stress have been then analyzed on the dislocation stability in the film and the stress values beyond which no longer the dislocation has a stable equilibrium have been finally determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Freund, L.B., Suresh, S.: Thin Film Materials. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Chen, K.X., Dai, Q., Lee, W., Kim, J.K., Schubert, E.F., Grandusky, J., Mendrick, M., Li, X., Smart, J.A.: Effect of dislocations on electrical and optical properties of n-type Al\(_{0.34}\)Ga\(_{0.66}\)N. Appl. Phys. Lett. 93, 192108 (2008). https://doi.org/10.1063/1.3021076

    Article  Google Scholar 

  3. Nix, W.D., Greer, J.R., Feng, G., Lilleodden, E.: Deformation at the nanometer and micrometer length scales: effects of strain gradients and dislocation starvation. Thin Solid Films 515(3152–3157), 3152–3157 (2007)

    Article  Google Scholar 

  4. Lee, S.-W., Aubry, S., Nix, D.W., Cai, W.: Dislocation junctions and jogs in a free-standing FCC thin film. Model. Simul. Mater. Sci. Eng. 19, 025002 (2011). https://doi.org/10.1088/0965-0393/19/2/025002

    Article  Google Scholar 

  5. Jian, W.-R., Xu, S., Su, Y., Beyerlein, I.J.: Role of layer thickness and dislocation distribution in confined layer slip in nanolaminated Nb. Int. J. Plast. 152, 103239 (2022). https://doi.org/10.1016/j.ijplas.2022.103239

    Article  Google Scholar 

  6. Chen, T., Yuan, R., Beyerlein, I.J., Zhou, C.: Predicting the size scaling in strength of nanolayered materials by a discrete slip crystal plasticity model. Int. J. Plast. 124, 247–260 (2020). https://doi.org/10.1016/j.ijplas.2019.08.016

    Article  Google Scholar 

  7. Hirth, J.P., Lothe, J.: Theory of Dislocations. Wiley, Wiley Interscience Publication, New-York (1982)

    MATH  Google Scholar 

  8. Gutkin, M.Y., Romanov, A.E.: Straight edge dislocation in a thin two-phase plate I. Elastic stress fields. Phys. Stat. Sol. (A) 125, 107–125 (1991). https://doi.org/10.1002/pssa.2211250108

    Article  Google Scholar 

  9. Kolesnikova, A.I., Romanov, A.E.: Virtual circular dislocation–disclination loop technique in boundary value problems in the theory of defects. J. Appl. Mech. 71, 409–417 (2004). https://doi.org/10.1115/1.1757488

    Article  MATH  Google Scholar 

  10. Gutkin, M.Y., Romanov, A.E.: Misfit dislocations in a thin two-phase heteroepitaxial plate. Phys. Stat. Sol. (A) 129, 117–126 (1992). https://doi.org/10.1002/pssa.2211290109

    Article  Google Scholar 

  11. Gutkin, M.Y., Romanov, A.E.: Straight edge dislocation in a thin two-phase plate, II. Impurity-vacancy polarization of plate, interaction of a dislocation with interface and free surfaces. Phys. Stat. Sol. (A) 129, 363–377 (1992). https://doi.org/10.1002/pssa.2211290207

    Article  Google Scholar 

  12. Zhou, K., Wu, M.S.: Elastic fields due to an edge dislocation in an isotropic film-substrate by the image method. Acta Mech. 211, 271–292 (2010). https://doi.org/10.1007/s00707-009-0226-8

    Article  MATH  Google Scholar 

  13. Liu, Y.W., Zhao, Y.X., Wen, P.H., Lin, S.: Elastic behavior of an edge dislocation inside the nanoscale coating layer. Acta Mech. 223, 1917–1935 (2012). https://doi.org/10.1007/s00707-012-0689-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Dundurs, J.: Sendecky: behavior of an edge dislocation near a bimetallic interface. J. Appl. Phys. 36, 3353–3354 (1965). https://doi.org/10.1063/1.1702981

    Article  Google Scholar 

  15. Gutkin, M.Y., Romanov, A.E.: On the stand-off positions of misfit dislocations. Phys. Stat. Sol. (A) 144, 39–57 (1994). https://doi.org/10.1002/pssa.2211440106

    Article  Google Scholar 

  16. Freund, L.B.: The stability of a dislocation threading a strained layer on a substrate. J. Appl. Mech. 54, 553–557 (1987). https://doi.org/10.1115/1.3173068

    Article  Google Scholar 

  17. Hu, S.M.: Misfit dislocations and critical thickness of heteroepitaxy. J. Appl. Phys. 69, 7901–7903 (1991). https://doi.org/10.1063/1.347476

    Article  Google Scholar 

  18. Mattews, J.W., Blakeslee, A.E.: Defects in epitaxial multilayers I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974). https://doi.org/10.1016/S0022-0248(74)80055-2

    Article  Google Scholar 

  19. Stagni, L., Lizzio, R.: Interaction between an edge dislocation and a lamellar inhomogeneity with a slipping interface. J. Appl. Mech. 59, 215–217 (1992). https://doi.org/10.1115/1.2899434

    Article  Google Scholar 

  20. Chen, F.M.: Edge dislocation interacting with a nonuniformly coated circular inclusion. Arch. Appl. Mech. 81, 1117–1128 (2011). https://doi.org/10.1007/s00419-010-0474-z

    Article  MATH  Google Scholar 

  21. Jiang, C., Chai, H., Yan, P., Song, F.: The interaction of a screw dislocation with a circular inhomogeneity near the free surface. Arch. Appl. Mech. 84, 343–353 (2014). https://doi.org/10.1007/s00419-013-0803-0

    Article  MATH  Google Scholar 

  22. Kolesnikova, A.L.: Disclinations and dislocations in a plate of finite thickness. In: Vladimirov, I.A. (ed.) Experimental Investigation and Theoretical Description of Disclinations, pp. 194–200. Ioffe Institute, Leningrad (1984) . (in Russian)

    Google Scholar 

  23. Vladimirov, V.I., Kolesnikova, A.L., Romanov, A.E.: Wedge disclinations in an elastic plate. Fizika Metallov i Metallovedenie 60, 1106–1115 (1985)

    Google Scholar 

  24. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. Mc Graw-Hill Book Company Inc., New-York (1952)

    MATH  Google Scholar 

  25. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon Press Ltd., Oxford (1970)

    MATH  Google Scholar 

  26. Weeks, R., Dundurs, J., Stippes, M.: Exact analysis of an edge dislocation near a surface layer. Int. J. Eng. Sci. 6, 365–372 (1968). https://doi.org/10.1016/0020-7225(68)90016-5

    Article  MATH  Google Scholar 

  27. Lee, M.-S., Dundurs, J.: Edge dislocation in a surface layer. Int. J. Eng. Sci. 11, 87–94 (1973). https://doi.org/10.1016/0020-7225(73)90071-2

    Article  MATH  Google Scholar 

  28. Peach, M., Köhler, J.S.: The forces exerted on dislocations and the stress fields produced by them. Phys. Rev. 80, 436–439 (1950). https://doi.org/10.1103/PhysRev.80.436

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work pertains to the French Government program “Investissements d’Avenir” (EUR INTREE, reference ANR-18-EURE-0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Colin.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colin, J. Dislocation gliding in a freestanding film submitted to uniaxial stress. Arch Appl Mech 93, 2983–2991 (2023). https://doi.org/10.1007/s00419-023-02421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02421-4

Keywords

Navigation