Skip to main content
Log in

Effects of surface/interface elasticity on the screw dislocation-induced stress field in an elastic film–substrate system

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In the analysis of continuum-based models describing the dislocation mechanism for a film–substrate system, it is customary to treat the surface of the film as ‘traction-free’ or ‘perfectly bonded’ to the substrate. For an ultra-thin film, however, the appreciable surface to volume ratio is known to be responsible for considerable surface energies which contribute significantly to the overall deformation of the structure. Consequently, in order to ensure a sufficiently accurate account of the corresponding dislocation behavior, it becomes necessary to incorporate the contribution of surface/interface effects into the description of deformation of the film surface or film–substrate interface. In this paper, we study the effects of surface/interface elasticity on the mechanical behavior of a screw dislocation embedded in a thin film bonded to an elastic substrate. Using conformal mapping techniques, we derive a semi-analytical solution for the dislocation-induced stress field in the film–substrate system. Our results show that when the thickness of the film approaches the nanoscale, failure to incorporate surface/interface elasticity into the description of the corresponding surface or interface may induce significant errors in the stress field and in any predictions involving the mobility of the dislocation. More specifically, we show that whereas the incorporation of surface elasticity with positive shear modulus always relieves the stress concentration on the surface of the film–substrate system, interface elasticity with positive shear modulus can either relieve or intensify the stress concentration (for the film) on the film–substrate interface depending on the stiffness of the substrate. In particular, for an ultra-thin film bonded to a soft substrate, we find that the presence of interface elasticity greatly influences the (unstable) equilibrium position of the dislocation in the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jackson, P., Hariskos, D., Lotter, E., et al.: New world record efficiency for Cu(In, Ga)\(\text{ Se }_{2}\) thin-film solar cells beyond 20%. Prog. Photovolt. Res. Appl. 19, 894–897 (2011)

    Article  Google Scholar 

  2. Hages, C.J., Levcenco, S., Miskin, C.K., et al.: Improved performance of Ge-alloyed CZTGeSSe thin-film solar cells through control of elemental losses. Prog. Photovolt. Res. Appl. 23, 376–384 (2015)

    Article  Google Scholar 

  3. Bates, J.B., Dudney, N.J., Neudecker, B., et al.: Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33–45 (2000)

    Article  Google Scholar 

  4. Li, Q., Ardebili, H.: Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte. J Power Sources 303, 17–21 (2016)

    Article  Google Scholar 

  5. Kamiya, T., Nomura, K., Hosono, H.: Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 11, 044305 (2010)

    Article  Google Scholar 

  6. Wager, J.F., Yeh, B., Hoffman, R.L., et al.: An amorphous oxide semiconductor thin-film transistor route to oxide electronics. Curr. Opin. Solid State Mater. Sci. 18, 53–61 (2014)

    Article  Google Scholar 

  7. Nix, W.D.: Mechanical properties of thin films. Metall. Mater. Trans. A 20, 2217–2245 (1989)

    Article  Google Scholar 

  8. Leibfried, G., Dietze, H.D.: Zur theorie der schraubenversetzung. Z. Phys. 126, 790–808 (1949)

    Article  MathSciNet  Google Scholar 

  9. Chou, Y.T.: Screw dislocations in and near lamellar inclusions. Phys. Status Solidi B 17, 509–516 (1966)

    Article  Google Scholar 

  10. Lin, L.S., Chou, Y.T.: Screw dislocations in a three-phase anisotropic medium. Int. J. Eng. Sci. 13, 317–325 (1975)

    Article  Google Scholar 

  11. Kamat, S.V., Hirth, J.P., Carnahan, B.: Image forces on screw dislocations in multilayer structures. Scr. Metall. 21, 1587–1592 (1987)

    Article  Google Scholar 

  12. Li, J., Liu, Y., Wen, P.: An edge dislocation interacting with an elastic thin-layered semi-infinite matrix. Math. Mech. Solids 19, 626–639 (2014)

    Article  MathSciNet  Google Scholar 

  13. Louat, N.: Solution of boundary value problems in plane strain. Nature 196, 1081–1082 (1962)

    Article  Google Scholar 

  14. Marcinkowski, M.J., Das, E.S.P.: The relationship between cracks, holes and surface dislocations. Int. J. Fract. 10, 181–200 (1974)

    Article  Google Scholar 

  15. Gutkin, M.Y., Romanov, A.E.: Straight edge dislocation in a thin two-phase plate I. Elastic stress fields. Physica Status Solidi (a) 125, 107–125 (1991)

    Article  Google Scholar 

  16. Wu, M.S., Wang, H.Y.: Solutions for edge dislocation in anisotropic film-substrate system by the image method. Math. Mech. Solids 12, 183–212 (2007)

    Article  MathSciNet  Google Scholar 

  17. Zhou, K., Wu, M.S.: Elastic fields due to an edge dislocation in an isotropic film-substrate by the image method. Acta Mech. 211, 271–292 (2010)

    Article  Google Scholar 

  18. Wang, H.Y., Yu, Y., Yan, S.P.: Elastic stress fields caused by a dislocation in \(\text{ Ge }_{x}\text{ Si }_{1-x}/\text{ Si }\) film-substrate system. Sci. China Phys. Mech. Astron. 57, 1078–1089 (2014)

    Article  Google Scholar 

  19. Lee, M.S., Dundurs, J.: Edge dislocation in a surface layer. Int. J. Eng. Sci. 11, 87–94 (1973)

    Article  Google Scholar 

  20. Wu, K.C., Chid, Y.T.: The elastic fields of a dislocation in an anisotropic strip. Int. J. Solids Struct. 32, 543–552 (1995)

    Article  Google Scholar 

  21. Savage, J.C.: Displacement field for an edge dislocation in a layered half-space. J. Geophys. Res. 103, 2439–2446 (1998)

    Article  Google Scholar 

  22. Han, X., Ghoniem, N.M.: Stress field and interaction forces of dislocations in anisotropic multilayer thin films. Philos. Mag. 85, 1205–1225 (2005)

    Article  Google Scholar 

  23. Weinberger, C.R., Aubry, S., Lee, S.W., et al.: Modelling dislocations in a free-standing thin film. Model. Simul. Mater. Sci. Eng. 17, 075007 (2009)

    Article  Google Scholar 

  24. Tan, E.H., Sun, L.Z.: Dislocation-induced stress field in multilayered heterogeneous thin film system. J. Nanomech. Micromech. 1, 91–103 (2011)

    Article  Google Scholar 

  25. Xia, R., Wu, W., Wu, R.: Elastic field due to dislocation loops in isotropic multilayer system. J. Mater. Sci. 51, 2942–2957 (2016)

    Article  Google Scholar 

  26. Chen, Y.P., Cai, Y.Y., Guo, J.P., et al.: Interfacial elastic fields of a 3D dislocation loop in anisotropic bimaterials of finite thickness crystal films. Mech. Mater. 113, 1–18 (2017)

    Article  Google Scholar 

  27. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  28. Gurtin, M.E., Weissmüller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  Google Scholar 

  29. Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82(4), 535–537 (2003)

    Article  Google Scholar 

  30. Copson, E.T.: An Introduction to the Theory of Functions of a Complex Variable. Oxford, London (1935)

    MATH  Google Scholar 

  31. Dai, M., Sun, H.: Thermo-elastic analysis of a finite plate containing multiple elliptical inclusions. Int. J. Mech. Sci. 75, 337–344 (2013)

    Article  Google Scholar 

  32. Dai, M., Meng, L.C., Huang, C., Gao, C.F.: Electro-elastic fields around two arbitrarily-shaped holes in a finite electrostrictive solid. Appl. Math. Model. 40, 4625–4639 (2016)

    Article  MathSciNet  Google Scholar 

  33. Peach, M., Koehler, J.S.: The forces exerted on dislocations and the stress fields produced by them. Phys. Rev. 80, 436–439 (1950)

    Article  MathSciNet  Google Scholar 

  34. Ruud, J.A., Witvrouw, A., Spaepen, F.: Bulk and interface stresses in silver-nickel multilayered thin films. J. Appl. Phys. 74, 2517–2523 (1993)

    Article  Google Scholar 

  35. Josell, D., Bonevich, J.E., Shao, I., Cammarata, R.C.: Measuring the interface stress: silver/nickel interfaces. J. Mater. Res. 14, 4358–4365 (1999)

    Article  Google Scholar 

  36. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  37. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)

    Article  Google Scholar 

  38. Wang, X., Schiavone, P.: A screw dislocation interacting with a bimaterial interface incorporating surface strain gradient elasticity. Eur. J. Mech. A Solids 53, 254–258 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Dai appreciates the Natural Science Foundation of Jiangsu Province (Application No. SBK2019040621), a start-up grant of the Nanjing University of Aeronautics and Astronautics and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. Schiavone thanks the Natural Sciences and Engineering Research Council of Canada for their support through a Discovery Grant (Grant # RGPIN – 2017 - 03716115112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schiavone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, M., Schiavone, P. Effects of surface/interface elasticity on the screw dislocation-induced stress field in an elastic film–substrate system. Z. Angew. Math. Phys. 70, 101 (2019). https://doi.org/10.1007/s00033-019-1144-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1144-9

Keywords

Mathematics Subject Classification

Navigation