Skip to main content
Log in

Pure bending of fiber reinforced curved beam at the failure limit

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The purpose of this research is to study the limit failure stresses occurring on the rectangular cross section fiber reinforced curved beam subjected to couple moment at the ends of the geometry. Utilizing analytical methods, closed form solutions are obtained for plane stress conditions. Considering different parameters such as the radial thickness and fiber volume of the beam, stress and displacement fields are investigated in detail. Employing different failure criteria, Tsai-Wu and Norris, calculated failure limit moment and failure location differences in the beam are analyzed. Moreover, various transverse Young’s modulus estimation methods available in the literature, Halpin-Tsai, Rule of Mixture, and Chamis, are considered. Effects of these estimations on the aforementioned fields are carefully handled as well. Using the material properties of glass fiber/epoxy constituents, numerical examples are generated by incorporating semi-analytical effective material property calculation models. Achieved numerical results have revealed that the radial thickness of the beam has more influence than fiber volume in terms of failure moment and stresses. Application of different criteria may cause different failure location acquisitions while mildly changing the limit failure moment. Young's modulus estimation influences the radial displacement prominently. In addition to the acquired results, from a general perspective, this study can be used as a benchmark model for failure stress analysis of related structures and may be expanded with appropriate numerical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Timoshenko, S., Goodier, J.N.: Theory of elasticity. McGraw Hill, New York (1951)

    MATH  Google Scholar 

  2. Conway, H.D.: Elastic-plastic bending of curved bars of constant and variable thickness. J. Appl. Mech. 27(4), 733–734 (1960). https://doi.org/10.1115/1.3644090

    Article  MATH  Google Scholar 

  3. Eason, G.: The elastic-plastic bending of a compressible curved bar. Appl. Sci. Res. 9(1), 53–63 (1960). https://doi.org/10.1007/BF00382189

    Article  MATH  Google Scholar 

  4. Shaffer, B.W., House, R.N., Jr.: The elastic-plastic stress distribution within a wide curved bar subjected to pure bending. ASME Trans. J. Appl. Mech. 22, 305–310 (1955). https://doi.org/10.1115/1.4011077

    Article  MATH  Google Scholar 

  5. Shaffer, B.W., House, R.N., Jr.: Displacements in a wide curved bar subjected to pure elastic-plastic bending. ASME Trans. J. Appl. Mech. 24, 447–452 (1957). https://doi.org/10.1115/1.4011561

    Article  MathSciNet  MATH  Google Scholar 

  6. Murch, S.A.: On the pure bending of an elastic, perfectly plastic curved bar in the state of plane strain. J. Franklin Inst. 270(4), 301–316 (1960). https://doi.org/10.1016/0016-0032(60)90625-6

    Article  MathSciNet  Google Scholar 

  7. Dryden, J.: Bending of inhomogeneous curved bars. Int. J. Solids Struct. 44(11–12), 4158–4166 (2007). https://doi.org/10.1016/j.ijsolstr.2006.11.021

    Article  MATH  Google Scholar 

  8. Arslan, E., Eraslan, A.N.: Analytical solution to the bending of a nonlinearly hardening wide curved bar. Acta Mech. 210(1), 71–84 (2010). https://doi.org/10.1007/s00707-009-0195-y

    Article  MATH  Google Scholar 

  9. Arslan, E., Eraslan, A.N.: Bending of graded curved bars at elastic limits and beyond. Int. J. Solids Struct. 50(5), 806–814 (2013). https://doi.org/10.1016/j.ijsolstr.2012.11.016

    Article  Google Scholar 

  10. Arslan, E., Sülü, İY.: Yielding of two-layer curved bars under pure bending. ZAMM J. Appl. Math. Mech. 94(9), 713–720 (2014). https://doi.org/10.1002/zamm.201200104

    Article  MATH  Google Scholar 

  11. Boresi, A.P., Schmidt, R.J., Sidebottom, O.M.: Advanced mechanics of materials (vol 6). Wiley, New York (1985)

    MATH  Google Scholar 

  12. Yang, Y.B., Kuo, S.R.: Effect of curvature on stability of curved beams. J. Struct. Eng. 113(6), 1185–1202 (1987). https://doi.org/10.1061/(ASCE)0733-9445(1987)113:6(1185)

    Article  Google Scholar 

  13. Kang, Y.J., Yoo, C.H.: Thin-walled curved beams. II: analytical solutions for buckling of arches. J. Eng. Mech. 120(10), 2102–2125 (1994). https://doi.org/10.1061/(ASCE)0733-9399(1994)120:10(2102)

    Article  Google Scholar 

  14. Fraternali, F., Bilotti, G.: Nonlinear elastic stress analysis in curved composite beams. Comput. Struct. 62(5), 837–859 (1997). https://doi.org/10.1016/S0045-7949(96)00301-X

    Article  MATH  Google Scholar 

  15. Kardomateas, G.A.: Bending of a cylindrically orthotropic curved beam with linearly distributed elastic constants. Q J. Mech. Appl. Math. 43(1), 43–55 (1990). https://doi.org/10.1093/qjmam/43.1.43

    Article  MathSciNet  MATH  Google Scholar 

  16. Tutuncu, N.: Plane stress analysis of end-loaded orthotropic curved beams of constant thickness with applications to full rings. J. Mech. Des. 120(2), 368–374 (1998). https://doi.org/10.1115/1.2826983

    Article  Google Scholar 

  17. Wang, M., Liu, Y.: Elasticity solutions for orthotropic functionally graded curved beams. Eur. J. Mech. A/Solids 37, 8–16 (2013). https://doi.org/10.1016/j.euromechsol.2012.04.005

    Article  MathSciNet  MATH  Google Scholar 

  18. Arefi, M.: Elastic solution of a curved beam made of functionally graded materials with different cross sections. Steel Compos. Struct. 18(3), 659–672 (2015). https://doi.org/10.12989/scs.2015.18.3.659

    Article  MathSciNet  Google Scholar 

  19. Dadras, P.: Plane strain elastic–plastic bending of a strain-hardening curved beam. Int. J. Mech. Sci. 43(1), 39–56 (2001). https://doi.org/10.1016/S0020-7403(99)00102-2

    Article  MATH  Google Scholar 

  20. Eraslan, A.N., Arslan, E.: A computational study on the nonlinear hardening curved beam problem. Int. J. Pure Appl. Math. 43(1), 129–143 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Eraslan, A.N., Arslan, E.: A concise analytical treatment of elastic-plastic bending of a strain hardening curved beam. ZAMM J. Appl. Math. Mech. 88(8), 600–616 (2008). https://doi.org/10.1002/zamm.200600037

    Article  MathSciNet  MATH  Google Scholar 

  22. Nie, G., Zhong, Z.: Closed-form solutions for elastoplastic pure bending of a curved beam with material inhomogeneity. Acta Mech. Solida Sin. 27(1), 54–64 (2014). https://doi.org/10.1016/S0894-9166(14)60016-1

    Article  Google Scholar 

  23. Fazlali, M.R., Arghavani, J., Eskandari, M.: An analytical study on the elastic-plastic pure bending of a linear kinematic hardening curved beam. Int. J. Mech. Sci. 144, 274–282 (2018). https://doi.org/10.1016/j.ijmecsci.2018.05.039

    Article  Google Scholar 

  24. Boley, B.A., Barrekette, E.S.: Thermal stress in curved beams. J. Aerosp. Sci. 25(10), 627–630 (1958). https://doi.org/10.2514/8.7814

    Article  MATH  Google Scholar 

  25. Mohammadi, M., Dryden, J.R.: Thermal stress in a nonhomogeneous curved beam. J. Therm. Stresses 31(7), 587–598 (2008). https://doi.org/10.1080/01495730801978471

    Article  Google Scholar 

  26. Haskul, M.: Elastic state of functionally graded curved beam on the plane stress state subject to thermal load. Mech. Based Des. Struct. 48(6), 739–754 (2020). https://doi.org/10.1080/15397734.2019.1660890

    Article  Google Scholar 

  27. Arslan, E., Mack, W., Gamer, U.: Elastic limits of a radially heated thick-walled cylindrically curved panel. Forsch Ingenieurwes 77(1–2), 13–23 (2013). https://doi.org/10.1007/s10010-013-0162-6

    Article  Google Scholar 

  28. Arslan, E., Mack, W.: Elastic-plastic states of a radially heated thick-walled cylindrically curved panel. Forsch Ingenieurwes 78(1–2), 1–11 (2014). https://doi.org/10.1007/s10010-014-0170-1

    Article  Google Scholar 

  29. Haskul, M., Arslan, E., Mack, W.: Radial heating of a thick-walled cylindrically curved FGM-panel. ZAMM J. Appl. Math. Mech. 97(3), 309–321 (2017). https://doi.org/10.1002/zamm.201500310

    Article  MathSciNet  Google Scholar 

  30. Lekhnitskii, S.G.: Theory of elasticity of an anisotropic body. Mir Publishers, Moscow (1981)

    MATH  Google Scholar 

  31. Nahvi, H.: Pure bending and tangential stresses in curved beams of trapezoidal and circular sections. J. Mech. Behav. Mater. 18(2), 123–132 (2007). https://doi.org/10.1515/JMBM.2007.18.2.123

    Article  Google Scholar 

  32. Gao, Y., Wang, M.Z., Zhao, B.S.: The refined theory of rectangular curved beams. Acta Mech. 189(3–4), 141–150 (2007). https://doi.org/10.1007/s00707-006-0413-9

    Article  MATH  Google Scholar 

  33. He, X.T., Li, X., Li, W.M., Sun, J.Y.: Bending analysis of functionally graded curved beams with different properties in tension and compression. Arch. Appl. Mech. 89, 1973–1994 (2019). https://doi.org/10.1007/s00419-019-01555-8

    Article  Google Scholar 

  34. Nie, G., Zhong, Z.: Exact solutions for elastoplastic stress distribution in functionally graded curved beams subjected to pure bending. Mech. Adv. Mater. Struct. 19(6), 474–484 (2012). https://doi.org/10.1080/15376494.2011.556835

    Article  Google Scholar 

  35. Pydah, A., Sabale, A.: Static analysis of bi-directional functionally graded curved beams. Compos. Struct. 160, 867–876 (2017). https://doi.org/10.1016/j.compstruct.2016.10.120

    Article  Google Scholar 

  36. Belarbi, M.O., Houari, M.S.A., Hirane, H., Daikh, A.A., Bordas, S.P.A.: On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory. Compos. Struct. 279, 114715 (2022). https://doi.org/10.1016/j.compstruct.2021.114715

    Article  Google Scholar 

  37. J. C. Halpin, Effects of Environmental Factors on Composite Materials. Air Force Materials Lab Wright-Patterson AFB OH (1969).

  38. Jones, R.M.: Mechanics of composite materials. Taylor and Francis, Philadelphia (1999)

    Google Scholar 

  39. Daniel, I.M., Ishai, O.: Engineering mechanics of composite materials. Oxford University Press, New York (2006)

    Google Scholar 

  40. C. C. Chamis, Mechanics of composite materials: past, present and future. In 21st annual meeting of the society for engineering science (No. E-3936) (1984).

  41. Kaw, A.K.: Mechanics of composite materials. CRC Press, Boca Raton (2005)

    Book  MATH  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Can Farukoğlu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farukoğlu, Ö.C., Korkut, İ. & Motameni, A. Pure bending of fiber reinforced curved beam at the failure limit. Arch Appl Mech 93, 2965–2981 (2023). https://doi.org/10.1007/s00419-023-02420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02420-5

Keywords

Navigation