Skip to main content
Log in

Dynamics transitions in coupled Kuramoto oscillators model with heterogeneity and asymmetric coupling effects

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The interplay between system dynamics and topological structure plays a crucial role in nonlinear system and modern network science. In this paper, we intend to investigate the effects of both heterogeneity and asymmetric coupling on the collective behaviors of Kuramoto oscillators, and reveal the processes how the synchronization transits to multi-cluster or disorder states. We find that the complete synchronization and anti-phase synchronization states in a star motif change into the remote synchronization state, owing to the disparity in the values of oscillators’ natural frequencies, and further become into multi-cluster due to the existence of multiple hubs in complete bipartite network, and finally achieve disorder state in complex networks. These findings are helpful to understand the forming processes of remote synchronization and general multi-cluster in coupled systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Osipov, G.V., Kurths, J., Zhou, C.: Synchronization in Oscillatory Networks. Springer (2007)

  2. Manrubia, S.C., Mikhailov, A.S., Zanette, D.: Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems, vol. 2. World Scientific (2004)

  3. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Courier Corporation (2003)

  4. Wu, C.W.: Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific (2007)

  5. Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press (2008)

  6. Pecora, L.M., Carroll, T.L.: Synchronization of chaotic systems. Chaos: Interdiscipl. J. Nonlinear Sci. 25, 097611 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arenas, A., Diaz-Guilera, A., Pérez-Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006)

    Article  Google Scholar 

  8. Wang, X., Xu, C., Zheng, Z.: Phase transition and scaling in Kuramoto model with high-order coupling. Nonlinear Dyn. 103, 2721 (2021)

    Article  Google Scholar 

  9. Parastesh, F., Jafari, S., Azarnoush, H., Shahriari, Z., Wang, Z., Boccaletti, S., Perc, M.: Chimeras. Phys. Rep. 898, 1 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nicosia, V., Valencia, M., Chavez, M., Díaz-Guilera, A., Latora, V.: Remote synchronization reveals network symmetries and functional modules. Phys. Rev. Lett. 110, 174102 (2013)

    Article  Google Scholar 

  11. Vlasov, V., Bifone, A.: Hub-driven remote synchronization in brain networks. Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  12. Qin, Y., Kawano, Y., Cao, M.: Stability of remote synchronization in star networks of Kuramoto oscillators. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 5209–5214. IEEE (2018)

  13. Siddique, A.B., Pecora, L., Hart, J.D., Sorrentino, F.: Symmetry-and input-cluster synchronization in networks. Phys. Rev. E 97, 042217 (2018)

    Article  Google Scholar 

  14. Della Rossa, F., Pecora, L., Blaha, K., Shirin, A., Klickstein, I., Sorrentino, F.: Symmetries and cluster synchronization in multilayer networks. Nat. Commun. 11, 1 (2020)

    Article  Google Scholar 

  15. Cao, B., Wang, Y., Wang, L., Yu, Y., Wang, X.: Cluster synchronization in complex network of coupled chaotic circuits: an experimental study. Front. Phys. 13, 130505 (2018)

  16. Zou, W., Senthilkumar, D., Zhan, M., Kurths, J.: Quenching, aging, and reviving in coupled dynamical networks. Phys. Rep. 931, 1 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, S., Zou, W., He, M., Kurths, J., Zhan, M.: Global stability of the sync with amplitude effects. SIAM J. Appl. Dyn. Syst. 16, 1923 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, X., Yao, C., Zhang, Z., Liu, S.: Stability of multiple attractors in the unidirectionally coupled circular networks of limit cycle oscillators. Commun. Nonlinear Sci. Numer. Simul. 111, 106456 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, X., Dong, J., Jia, W.-J., Zheng, Z.-G., Xu, C.: Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling. Front. Phys. 13, 1 (2018)

    Article  Google Scholar 

  20. Kim, J., Moon, J.-Y., Lee, U., Kim, S., Ko, T.-W.: Various synchronous states due to coupling strength inhomogeneity and coupling functions in systems of coupled identical oscillators. Chaos: Interdiscipl. J. Nonlinear Sci. 29, 011106 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ryu, J.-W., Son, W.-S., Hwang, D.-U.: Oscillation death in coupled counter-rotating identical nonlinear oscillators. Phys. Rev. E 100, 022209 (2019)

    Article  Google Scholar 

  22. Zhang, Y., Strogatz, S.H.: Basins with tentacles. Phys. Rev. Lett. 127, 194101 (2021)

    Article  Google Scholar 

  23. Gómez-Gardenes, J., Gómez, S., Arenas, A., Moreno, Y.: Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106, 128701 (2011)

    Article  Google Scholar 

  24. Vlasov, V., Zou, Y., Pereira, T.: Explosive synchronization is discontinuous. Phys. Rev. E 92, 012904 (2015)

    Article  MathSciNet  Google Scholar 

  25. Boccaletti, S., Almendral, J., Guan, S., Leyva, I., Liu, Z., Sendiña-Nadal, I., Wang, Z., Zou, Y.: Explosive transitions in complex networks’ structure and dynamics: percolation and synchronization. Phys. Rep. 660, 1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bergner, A., Frasca, M., Sciuto, G., Buscarino, A., Ngamga, E.J., Fortuna, L., Kurths, J.: Remote synchronization in star networks. Phys. Rev. E 85, 026208 (2012)

    Article  Google Scholar 

  27. Kang, L., Wang, Z., Huo, S., Tian, C., Liu, Z.: Remote synchronization in human cerebral cortex network with identical oscillators. Nonlinear Dyn. 99, 1577 (2020)

    Article  Google Scholar 

  28. Lacerda, J., Freitas, C., Macau, E.: Multistable remote synchronization in a star-like network of non-identical oscillators. Appl. Math. Model. 69, 453 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, X., Li, F., Liu, X., Liu, S.: Stability in star networks of identical Stuart–Landau oscillators with asymmetric coupling. Commun. Nonlinear Sci. Numer. Simul. 114, 106674 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tessone, C.J., Mirasso, C.R., Toral, R., Gunton, J.D.: Diversity-induced resonance. Phys. Rev. Lett. 97, 194101 (2006)

    Article  Google Scholar 

  31. Bragard, J., Boccaletti, S., Mancini, H.: Asymmetric coupling effects in the synchronization of spatially extended chaotic systems. Phys. Rev. Lett. 91, 064103 (2003)

    Article  Google Scholar 

  32. Bragard, J., Vidal, G., Mancini, H., Mendoza, C., Boccaletti, S.: Chaos suppression through asymmetric coupling. Chaos: Interdiscipl. J. Nonlinear Sci. 17, 043107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tarkashvand, A., Golmohammadi, A., Safizadeh, M.: Stability and modal analysis of an unbalanced asymmetric multi-disk rotor system on bearings as viscoelastic substrate. Arch. Appl. Mech. 92, 2247 (2022)

    Article  Google Scholar 

  34. Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137 (2005)

    Article  Google Scholar 

  35. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rodrigues, F.A., Peron, T.K.D., Ji, P., Kurths, J.: The Kuramoto model in complex networks. Phys. Rep. 610, 1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yuan, D., Tian, J.-L., Lin, F., Ma, D.-W., Zhang, J., Cui, H.-T., Xiao, Y.: Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions. Front. Phys. 13, 1 (2018)

    Article  Google Scholar 

  38. Varela, F., Lachaux, J.-P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229 (2001)

    Article  Google Scholar 

  39. Hipp, J.F., Engel, A.K., Siegel, M.: Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69, 387 (2011)

    Article  Google Scholar 

  40. Uhlhaas, P.J., Singer, W.: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. neuron 52, 155 (2006)

    Article  Google Scholar 

  41. Roelfsema, P.R., Engel, A.K., König, P., Singer, W.: Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157 (1997)

    Article  Google Scholar 

  42. Engel, A.K., Fries, P., Singer, W.: Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704 (2001)

    Article  Google Scholar 

  43. Fries, P., Reynolds, J.H., Rorie, A.E., Desimone, R.: Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560 (2001)

    Article  Google Scholar 

  44. Fell, J., Axmacher, N.: The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 12, 105 (2011)

    Article  Google Scholar 

  45. Minati, L.: Remote synchronization of amplitudes across an experimental ring of non-linear oscillators. Chaos: Interdiscipl. J. Nonlinear Sci. 25, 123107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of this work by the National Natural Science Foundation of China under Grant No. 11605142, and the Fundamental Research Funds for the Central Universities under Grant Nos. 2452022375, 2452021062 and 2452020183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Liu.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liu, X., Chen, R. et al. Dynamics transitions in coupled Kuramoto oscillators model with heterogeneity and asymmetric coupling effects. Arch Appl Mech 93, 1095–1106 (2023). https://doi.org/10.1007/s00419-022-02315-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02315-x

Keywords

Navigation