Skip to main content
Log in

Phase transition and scaling in Kuramoto model with high-order coupling

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The classical Kuramoto model serves as a useful tool for studying synchronization transitions in coupled oscillators that is limited to the sinusoidal and pairwise interactions. In this paper, we extend the classical Kuramoto model to incorporate the high-order structures and non-pairwise interactions into the coupling function. Using a self-consistent approach and constructing parametric functions, we describe the extensive multi-cluster states induced by high-order structures and identify various types of phase transitions toward synchrony. In particular, we establish the universal scaling relation for each branch of multiclusters, which describes the asymptotic dependence of the order parameters (Kuramoto and Daido) on the coupling strength near the critical points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Strogatz, S.H.: Sync: The emerging science of spontaneous order, pp. 179–229. Hypernion, New York (2003)

    Google Scholar 

  2. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A universal concept in nonlinear sciences,102–134. Cambridge Univerbsity Press, Cambridge (2003)

    Book  Google Scholar 

  3. Ermentrout, B.: An adaptive model for synchrony in the firefly Pteroptyx malaccae. J. Math. Biol 29, 571 (1991)

    Article  MathSciNet  Google Scholar 

  4. Taylor, D., Ott, E., Restrepo, J.G.: Spontaneous synchronization of coupled oscillator systems with frequency adaptation. Phys. Rev. E 81, 046214 (2010)

    Article  MathSciNet  Google Scholar 

  5. Jiang, Z.P., McCall, M.: Numerical simulation of a large number of coupled lasers. JOSA B 10(1), 155–163 (1993)

    Article  Google Scholar 

  6. Benz, S., Burroughs, C.: Coherent emission from twodimensional Josephson junction arrays. Appl. Phys. Lett 58, 2162 (1991)

    Article  Google Scholar 

  7. Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Selforganized synchronization in decentralized power grids. Phys. Rev. Lett 109, 064101 (2012)

    Article  Google Scholar 

  8. Kiss, I.Z., Zhai, Y., Hudson, J.L.: Emerging coherence in a population of chemical oscillators. Science 296, 1676 (2002)

    Article  Google Scholar 

  9. Skardal, P.S., Arenas, A.: Control of coupled oscillator networks with application to microgrid technologies. Sci. Adv 1, e1500339 (2015)

    Article  Google Scholar 

  10. Kuramoto, Y.: Chemical oscillations, waves, and turbulence, 22–34. Dover, New York (2003)

    Google Scholar 

  11. Abrams, D.M., Mirollo, R., Strogatz, S.H., Wiley, D.A.: Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett 101, 084103 (2008)

    Article  Google Scholar 

  12. Xu, C., Sun, Y.T., Gao, J., Jia, W.J., Zheng, Z.G.: Phase transition in coupled star networks. Nonlinear Dyn 94(2), 1267–1275 (2018)

    Article  Google Scholar 

  13. Acebrón, J.. A., Bonilla, L.L., Pérez Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys 77, 137 (2005)

    Article  Google Scholar 

  14. Strogatz, S.H.: From Kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D (Amsterdam) 143, 1 (2000)

    Article  MathSciNet  Google Scholar 

  15. Pazó, D.: Thermodynamic limit of the first-order phase transition in the Kuramoto model. Phys. Rev. E 72, 046211 (2005)

    Article  MathSciNet  Google Scholar 

  16. Basnarkov, L., Urumov, V.: Phase transitions in the Kuramoto model. Phys. Rev. E 76, 057201 (2007)

    Article  Google Scholar 

  17. Xu, C., Zheng, Z.G.: Bifurcation of the collective oscillatory state in phase oscillators with heterogeneity coupling. Nonlinear Dyn 98(3), 2365–2373 (2019)

    Article  Google Scholar 

  18. Komarov, M., Pikovsky, A.: Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling. Phys. Rev. E 92, 020901(R) (2015)

    Article  Google Scholar 

  19. Millán, A.P., Torres, J.J., Bianconi, G.: Complex network geometry and frustrated synchronization. Sci. Rep 8, 9910 (2018)

    Article  Google Scholar 

  20. Salnikov, V., Cassese, D., Lambiotte, R.: Simplicial complexes and complex systems. Eur. J. Phys 40, 014001 (2019)

    Article  Google Scholar 

  21. Sizemore, A.E., Giusti, C., Kahn, A., Vettel, J.M., Betzel, R., Bassett, D.S.: Cliques and cavities in the human connectome. J. Comput. Neurosci 44, 115 (2018)

    Article  MathSciNet  Google Scholar 

  22. Kiss, I.Z., Zhai, Y., Hudson, J.L.: Predicting mutual entrainment of oscillators with experiment-based phase models. Phys. Rev. Lett. 94, 248301 (2005)

    Article  Google Scholar 

  23. Goldobin, E., Koelle, D., Kleiner, R., Mints, R.G.: Josephson junction with a magnetic-field tunable ground state. Phys. Rev. Lett. 107, 227001 (2011)

    Article  Google Scholar 

  24. Iacopini, I., Petri, G., Barrat, A., Latora, V.: Simplicial models of social contagion. Nat Commun 10, 2485 (2019)

    Article  Google Scholar 

  25. Rosenblum, M., Pikovsky, A.: Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling. Phys. Rev. Lett. 98, 064101 (2007)

    Article  Google Scholar 

  26. Temirbayev, A.A., Zhanabaev, Z.Z., Tarasov, S.B., Ponomarenko, V.I., Rosenblum, M.: Experiments on oscillator ensembles with global nonlinear coupling. Phys. Rev. E 85, 015204(R) (2012)

    Article  Google Scholar 

  27. Skardal, P.S., Arenas, A.: Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes. Phys. Rev. Lett 122, 248301 (2019)

    Article  Google Scholar 

  28. Hipp, J.F., Hawallek, D.J., Corbetta, M., Siegel, M., Engel, A.K.: Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat. Neurosci 15, 884 (2012)

    Article  Google Scholar 

  29. Reimann, M.W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi, G., Dlotko, P., Levi, R., Hess, K., Markram, H.: Cliques of neurons bound in to cavities provide a missing link between structure and function. Front. Comput. Neurosci 11, 48 (2017)

    Article  Google Scholar 

  30. Xu, C., Boccaletti, S., Zheng, Z., Guan, S.: Universal phase transitions to synchronization in Kuramoto-like models with heterogeneous coupling. New J. Phys. 21, 113018 (2019)

    Article  MathSciNet  Google Scholar 

  31. Xu, C., Wang, X.B., Skardal, P.S.: Bifurcation analysis and structural stability of simplicial oscillator populations. Phys. Rev. Res 2, 023281 (2020)

    Article  Google Scholar 

  32. Daido, H.: Multibranch entrainment and scaling in large populations of coupled oscillators. Phys. Rev. Lett 77, 1406 (1996)

    Article  Google Scholar 

  33. Filatrella, G., Pedersen, N.F., Wiesenfeld, K.: Generalized coupling in the Kuramoto model. Phys. Rev. E 75, 017201 (2007)

    Article  Google Scholar 

  34. Zou, W., Wang, J.: Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability. Phys. Rev. E 102, 012219 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11875135, 11905068), the Scientific Research Funds of Huaqiao University (Grant No. ZQN-810).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Can Xu or Zhigang Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix, we deduce the scaling behaviors of order parameters close to \(K_{c}\) dominated by the linear high-order coupling. Following the similar method, Taylor expansion of H(q) at \(q_{c}\) yields

$$\begin{aligned} H(q)=H(q_{c})+A(\delta q)^{\mu }+B(\delta q)^{\nu }, \end{aligned}$$
(A1)

with (AB) being the expanding coefficients and \((\mu ,\nu )\) being the power indices. Substituting Eq. (A1) into the self-consistent equation Eq. (22), we have

$$\begin{aligned} \delta K=-\frac{K_{c}^{2}A\delta q^{\mu }+K_{c}^{2}B\delta q^{\nu }}{1+K_{c}A\delta q^{\mu }+K_{c}B\delta q^{\nu }}. \end{aligned}$$
(A2)

Similarly, we expand Eq. (A2) as the following Taylor series

$$\begin{aligned} \delta K=X(\delta q)^{a}+Y(\delta q)^{b}. \end{aligned}$$
(A3)

To reversely solve \(\delta q\), we adopt the following ansatz

$$\begin{aligned} \delta q=X^{-\frac{1}{a}}\delta K^{\frac{1}{a}}+E\delta K^{\varepsilon }. \end{aligned}$$
(A4)

The undetermined quantities E and \(\varepsilon \) can be solved self-consistently, which are the same as Eq. (29).

Since \(R_{2}=\frac{q}{K}\) and \(R_{1}=(2\eta -1)h(q)\)we have

$$\begin{aligned} \delta R_{2}=\frac{\delta q}{K_{c}}-\frac{q_{c}}{K_{c}^{2}}\delta K, \end{aligned}$$
(A5)

and

$$\begin{aligned} \delta R_{1}=(2\eta -1)h^{\prime }(q_{c})\delta q. \end{aligned}$$
(A6)

Substituting Eq. (A4) into Eq. (A5), and if \(q_{c}=0\) we have the parameters array

$$\begin{aligned} \chi _{2}=\left( \frac{1}{a},\varepsilon ,\frac{X^{-\frac{1}{a}}}{K_{c}},\frac{E}{K_{c}}\right) . \end{aligned}$$
(A7)

However if \(q_{c}>0\), \(\chi _{2}\) should be discussed in three different cases according to the value of \(\varepsilon \). For \(\varepsilon <1\), \(\chi _{2}\) is the same as Eq. (A7). If \(\varepsilon =1\),

$$\begin{aligned} \chi _{2}=(\frac{1}{a},1,\frac{X^{-\frac{1}{a}}}{K_{c}},(\frac{E}{K_{c}}-\frac{q_{c}}{K_{c}^{2}})), \end{aligned}$$
(A8)

and if \(\varepsilon >1\),

$$\begin{aligned} \chi _{2}=(\frac{1}{a},1,\frac{X^{-\frac{1}{a}}}{K_{c}},-\frac{q_{c}}{K_{c}^{2}}). \end{aligned}$$
(A9)

Finally, the parameters array \(\chi _{1}\) becomes

$$\begin{aligned} \chi _{1}= & {} \left( \frac{1}{a},\varepsilon ,(2\eta -1)f^{\prime }(q_{c})X^{-\frac{1}{a}},\right. \nonumber \\&\left. (2\eta -1)f^{\prime }(q_{c})E\right) . \end{aligned}$$
(A10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, C. & Zheng, Z. Phase transition and scaling in Kuramoto model with high-order coupling. Nonlinear Dyn 103, 2721–2732 (2021). https://doi.org/10.1007/s11071-021-06268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06268-8

Keywords

Navigation