Skip to main content
Log in

Calculation of the equivalent shear moduli of the grid beetle elytron plate core layer

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

To establish an equivalent model of the core layer of the grid beetle elytron plate (GBEP) and perfect the bionic system of the beetle elytron plate (BEP), the in-plane and out-of-plane equivalent shear moduli of the basic unit of the GBEP core layer are calculated by the energy method, and the accuracy of the expressions is verified by comparison with the results obtained with the finite element method and experiments. The results show that the in-plane and out-of-plane shear moduli can be expressed as functions of \(\eta \), the ratio of trabecula radius to unit width, and the trends of the in-plane and out-of-plane shear moduli of the GBEP core unit with \(\eta \) are discussed. The concept of stiffness per unit volume (SPUV, k) is proposed, and the difference in shear performance (in-plane and out-of-plane) between the GBEP and grid plate (GP) core layer is theoretically revealed for the first time. The SPUV of the GBEP is slightly less than that of the GP for out-of-plane shearing but far better than that of the GP for in-plane shearing. According to the values of the in-plane and out-of-plane SPUVs of the GBEP and GP, a theoretical explanation is given for why the shear performance of the GBEP core is better than that of the GP, and the shear moduli of GBEP core equivalent model are obtained. From the point of view of shear properties, the theoretical basis that the in-plane stiffness of GBEP core cannot be ignored is given for the first time. This paper lays a theoretical foundation for exploring the shear properties of GBEP and its application in practical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Miller, W., Smith, C.W., Scarpa, F., Evans, K.E.: Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos. Sci. Technol. 70, 1049–1056 (2010). https://doi.org/10.1016/j.compscitech.2009.10.022

    Article  Google Scholar 

  2. Wang, D., Bai, Z.: Mechanical property of paper honeycomb structure under dynamic compression. Mater. Des. 77, 59–64 (2015). https://doi.org/10.1016/j.matdes.2015.03.037

    Article  Google Scholar 

  3. He, X.D., Kong, X.H., Shi, L.P., Li, M.W.: High-frequency vibration response of metal honeycomb sandwich structure. Adv. Mat. Res. 79–82, 1727–1730 (2009). https://doi.org/10.4028/www.scientific.net/AMR.79-82.1727

    Article  Google Scholar 

  4. Kodiyalam, S., Nagendra, S., DeStefano, J.: Composite sandwich structure optimization with application to satellite components. AIAA J. 34, 614–621 (1996). https://doi.org/10.2514/3.13112

    Article  MATH  Google Scholar 

  5. Zhao, C., Zheng, W., Ma, J., Zhao, Y.: The lateral compressive buckling performance of aluminum honeycomb panels for long-span hollow core roofs. Materials. 9, 444 (2016). https://doi.org/10.3390/ma9060444

    Article  Google Scholar 

  6. Liu, Z., Yu, Y., Yang, Z., Wei, Y., Cai, J., Li, M., Huang, C.: Dynamic experimental studies of A6N01S-T5 aluminum alloy material and structure for high-speed trains. Acta Mech. Sinica. 35(4), 763–772 (2019). https://doi.org/10.1007/s10409-018-0830-8

    Article  Google Scholar 

  7. Belingardi, G., Cavatorta, M.P., Duella, R.: Material characterization of a composite–foam sandwich for the front structure of a high speed train. Compos. Struct. 61, 13–25 (2003). https://doi.org/10.1016/S0263-8223(03)00028-X

    Article  Google Scholar 

  8. Hu, B.: Bio-based composite sandwich panel for residential construction. (2006)

  9. Briscoe, C.R., Mantell, S.C., Davidson, J.H., Okazaki, T.: Design procedure for web core sandwich panels for residential roofs. J. Sandw. Struct. Mater. 13, 23–58 (2011). https://doi.org/10.1177/1099636210365441

    Article  Google Scholar 

  10. Chen, H.-J., Tsai, S.W.: Analysis and optimum design of composite grid structures. J. Compos. Mater. 30, 503–534 (1996). https://doi.org/10.1177/002199839603000405

    Article  Google Scholar 

  11. Chen, J.X., Zhang, X.M., Okabe, Y., Xie, J., Xu, M.Y.: Beetle elytron plate and the synergistic mechanism of a trabecular-honeycomb core structure. Sci. China Technol. Sci. 62, 87–93 (2019). https://doi.org/10.1007/s11431-018-9290-1

    Article  Google Scholar 

  12. Chen, J., Xie, J., Zhu, H., Guan, S., Wu, G., Noori, M.N., Guo, S.: Integrated honeycomb structure of a beetle forewing and its imitation. Mater. Sci. Eng. C 32, 613–618 (2012). https://doi.org/10.1016/j.msec.2011.12.020

    Article  Google Scholar 

  13. Chen, J., Ni, Q., Iwamoto, M.: A reinforced sandwich plate with polygonal grid in the middle. (2006)

  14. Hao, N., Chen, J., Song, Y., Zhang, X., Zhao, T., Fu, Y.: A new type of bionic grid plate—the compressive deformation and mechanical properties of the grid beetle elytron plate. J. Sandw. Struct. Mater. (2021). https://doi.org/10.1177/1099636221993872

    Article  Google Scholar 

  15. Chen, J., Hao, N., Pan, L., Hu, L., Du, S., Fu, Y.: Characteristics of compressive mechanical properties and strengthening mechanism of 3D-printed grid beetle elytron plates. J. Mater. Sci. 55, 8541–8552 (2020). https://doi.org/10.1007/s10853-020-04630-6

    Article  Google Scholar 

  16. Hoff, N.J.: Bending and buckling of rectangular sandwich plates. (1950)

  17. Phan, C.N., Bailey, N.W., Kardomateas, G.A., Battley, M.A.: Wrinkling of sandwich wide panels/beams based on the extended high-order sandwich panel theory: formulation, comparison with elasticity and experiments. Arch. Appl. Mech. 82, 1585–1599 (2012). https://doi.org/10.1007/s00419-012-0673-x

    Article  MATH  Google Scholar 

  18. Carlsson, L.A., Kardomateas, G.A.: Structural and Failure Mechanics of Sandwich Composites. Springer Science & Business Media, Dordrecht (2011)

    Book  MATH  Google Scholar 

  19. Frostig, Y., Baruch, M., Vilnay, O., Sheinman, I.: High-order theory for sandwich-beam behavior with transversely flexible core. J. Eng. Mech. 118, 1026–1043 (1992). https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1026)

    Article  Google Scholar 

  20. Barut, A., Madenci, E., Anderson, T., Tessler, A.: Equivalent single-layer theory for a complete stress field in sandwich panels under arbitrarily distributed loading. Compos. Struct. 58, 483–495 (2002). https://doi.org/10.1016/S0263-8223(02)00137-X

    Article  Google Scholar 

  21. Tornabene, F., Fantuzzi, N., Viola, E., Batra, R.C.: Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory. Compos. Struct. 119, 67–89 (2015). https://doi.org/10.1016/j.compstruct.2014.08.005

    Article  Google Scholar 

  22. Gibson, L.J., Ashby, M.F.: Cellular Solids. Cambridge University Press (1997)

  23. Gotoh, M., Yamashita, M., Kawakita, A.: Crush behavior of honeycomb structure impacted by drop-hammer and its numerical analysis. J. Soc. Mater. Sci. Jpn. 45, 261–266 (1996). https://doi.org/10.2472/jsms.45.12Appendix_261

    Article  Google Scholar 

  24. Warren, W.E., Kraynik, A.M.: Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials. Mech. Mater. 6, 27–37 (1987). https://doi.org/10.1016/0167-6636(87)90020-2

    Article  Google Scholar 

  25. Du, S., Li, Y., Chen, J.: The calculation of in-plane equivalent elastic parameters of a grid beetle elytra plate core. Mech. Mater. 161, 103999 (2021). https://doi.org/10.1016/j.mechmat.2021.103999

    Article  Google Scholar 

  26. Kaplunov, J., Prikazchikova, L., Alkinidri, M.: Antiplane shear of an asymmetric sandwich plate. Contin. Mech. Thermodyn. 33, 1247–1262 (2021). https://doi.org/10.1007/s00161-021-00969-6

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Y., Liu, W., Gao, W.: Out-of-plane shear property analysis of Nomex honeycomb sandwich structure. J. Reinf. Plast. Compos. 40, 165–175 (2021). https://doi.org/10.1177/0731684420943285

    Article  Google Scholar 

  28. Shi, G., Tong, P.: Equivalent transverse shear stiffness of honeycomb cores. Int. J. Solids Struct. 32, 1383–1393 (1995). https://doi.org/10.1016/0020-7683(94)00202-8

    Article  MATH  Google Scholar 

  29. Paul Praveen, A., Jatin, N.V., Raveen, S.M., Vasudevan, R., Ananda Babu, A., Edwin Sudhagar, P.: Comparison of shear rigidity of epoxy and vinyl ester reinforced hybrid honeycomb core. Mater. Today Proc. 22, 2378–2385 (2020). https://doi.org/10.1016/j.matpr.2020.03.362

    Article  Google Scholar 

  30. Penzien, J., Didriksson, T.: Effective shear modulus of honeycomb cellular structure. AIAA J. 2, 531–535 (1964). https://doi.org/10.2514/3.2346

    Article  Google Scholar 

  31. Reissner, E.: Small bending and stretching of sandwich-type shells. (1950)

  32. ASTMC273/C273M-20: Standard test method for shear properties of sandwich core materials, https://www.astm.org/c0273_c0273m-20.html, (2020)

  33. Pan, T., Jiang, Y., He, H., Wang, Y., Yin, K.: Effect of structural build-up on interlayer bond strength of 3D printed cement mortars. Materials. 14, 236 (2021). https://doi.org/10.3390/ma14020236

    Article  Google Scholar 

  34. Chacón, J.M., Caminero, M.A., García-Plaza, E., Núñez, P.J.: Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 124, 143–157 (2017). https://doi.org/10.1016/j.matdes.2017.03.065

    Article  Google Scholar 

  35. Nguyen, H.T., Crittenden, K., Weiss, L., Bardaweel, H.: Experimental modal analysis and characterization of additively manufactured polymers. Polymers 14, 2071 (2022). https://doi.org/10.3390/polym14102071

    Article  Google Scholar 

  36. Chen, J., Hao, N., Zhao, T., Song, Y.: Flexural properties and failure mechanism of 3D-printed grid beetle elytron plates. Int. J. Mech. Sci. 210, 106737 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106737

    Article  Google Scholar 

  37. Chen, J., Hao, N., Song, Y., Yang, J., He, C.: Experimental studies of the shear mechanical properties of 3D-printed grid beetle elytron plates. J. Mater. Sci. 57(35), 16974–16987 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No. 51875102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiang Chen.

Ethics declarations

Conflict of interest

The authors declare no known competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Hao, N., Chen, J. et al. Calculation of the equivalent shear moduli of the grid beetle elytron plate core layer. Arch Appl Mech 93, 1023–1034 (2023). https://doi.org/10.1007/s00419-022-02311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02311-1

Keywords

Navigation