Skip to main content
Log in

Free vibration analysis of axially functionally graded beams using Fredholm integral equations

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This article outlines the use of Fredholm integral equations (also known as Fredholm transformation approach) for free vibration analysis of non-uniform and stepped axially functionally graded (AFG) beams. The method is shown to be capable of dealing with beams of arbitrary variations of both cross section dimensions and material properties. Tabulated results of free vibration analysis for beams with various classical boundary conditions are presented. The governing equation with varying coefficients is transformed to Fredholm integral equations. Natural frequencies can be determined by requiring that the resulting Fredholm integral equation has a non-trivial solution. Our method has fast convergence, and obtained numerical results have high accuracy. Effects of axial force and shear deformation are investigated on the natural frequencies of AFG beams. The accuracy of obtained results is verified with those obtained in other available references. The present results are of benefit to optimum design of non-homogeneous tapered beam structures and graded beams of special polynomial non-homogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cao, D., Gao, Y., Yao, M., Zhang, W.: Free vibration of axially functionally graded beams using the asymptotic development method. Eng. Struct. 173, 442–448 (2018). https://doi.org/10.1016/j.engstruct.2018.06.111

    Article  Google Scholar 

  2. Patra, A.: An epidemiology model involving high-order linear Fredholm integro-differential-difference equations via a novel balancing collocation technique. J. Comput. Appl. Math. (2022). https://doi.org/10.1016/j.cam.2022.114851

    Article  MATH  Google Scholar 

  3. Gagnon, L., Hayat, A., Xiang, S., Zhang, C.: Fredholm transformation on Laplacian and rapid stabilization for the heat equation. J. Funct. Anal. 283(12), 109664 (2022). https://doi.org/10.1016/j.jfa.2022.109664

    Article  MathSciNet  MATH  Google Scholar 

  4. Rezazadeh, T.: Esmaeil Najafi, Jacobi collocation method and smoothing transformation for numerical solution of neutral nonlinear weakly singular Fredholm integro-differential equations. Appl. Numer. Math. 181, 135–150 (2022). https://doi.org/10.1016/j.apnum.2022.05.019

    Article  MathSciNet  MATH  Google Scholar 

  5. Marzban, H.R.: Optimal control of nonlinear fractional order delay systems governed by Fredholm integral equations based on a new fractional derivative operator. ISA Trans. (2022). https://doi.org/10.1016/j.isatra.2022.06.037

    Article  Google Scholar 

  6. Qiu, R., Duan, X., Huangpeng, Q., Yan, L.: The best approximate solution of Fredholm integral equations of first kind via Gaussian process regression. Appl. Math. Lett. 133, 108272 (2022). https://doi.org/10.1016/j.aml.2022.108272

    Article  MathSciNet  MATH  Google Scholar 

  7. Singh, R., Sharma, P.: Free vibration analysis of axially functionally graded tapered beam using harmonic differential quadrature method. Mater Today Proc 44(1), 2223–2227 (2021). https://doi.org/10.1016/j.matpr.2020.12.357

    Article  Google Scholar 

  8. Nguyen, K.V., Bich Dao, T.T., Cao, M.V.: Comparison studies of receptance matrices of isotropic homogeneous beam and the axially functionally graded beam carrying concentrated masses. Appl. Acoust. 160, 107160 (2020). https://doi.org/10.1016/j.apacoust.2019.107160

    Article  Google Scholar 

  9. Šalinić, S., Obradović, A., Tomović, A.: Free vibration analysis of axially functionally graded tapered, stepped, and continuously segmented rods and beams. Compos. B Eng. 150, 135–143 (2018). https://doi.org/10.1016/j.compositesb.2018.05.060

    Article  Google Scholar 

  10. Han, H., Cao, D., Liu, L.: A new approach for steady-state dynamic response of axially functionally graded and non-uniformed beams. Compos. Struct. 226, 111270 (2019). https://doi.org/10.1016/j.compstruct.2019.111270

    Article  Google Scholar 

  11. Melaibari, A., Abo-bakr, R.M., Mohamedd, S.A., Eltaher, M.A.: Static stability of higher order functionally graded beam under variable axial load. Alex. Eng. J. 59(3), 1661–1675 (2020). https://doi.org/10.1016/j.aej.2020.04.012

    Article  Google Scholar 

  12. Zhang, X., Ye, Z., Zhou, Y.: A Jacobi polynomial-based approximation for free vibration analysis of axially functionally graded material beams. Compos. Struct. 225, 111070 (2019). https://doi.org/10.1016/j.compstruct.2019.111070

    Article  Google Scholar 

  13. Amini, M., Akbarpour, A., Haji Kazemi, H., Adibramezani, M.R.: An innovative approach for evaluating mode shapes and natural frequencies of tubular frame and damped outriggers. Innov. Infrastruct. Solut. (2022). https://doi.org/10.1007/s41062-021-00634-6

    Article  Google Scholar 

  14. Wankhade, R.L., Niyogi, S.B.: Buckling analysis of symmetric laminated composite plates for various thickness ratios and modes. Innov. Infrastruct. Solut. 5, 65 (2020). https://doi.org/10.1007/s41062-020-00317-8

    Article  Google Scholar 

  15. Anand, V., Satish Kumar, S.R.: Evaluation of seismic response of inelastic structures considering soil-structure interaction. Innovat. Infrastruct. Solut. 6, 83 (2021). https://doi.org/10.1007/s41062-020-00423-7

    Article  Google Scholar 

  16. Sridhar, R., Prasad, R.: Influence of hybrid fibers on static and dynamic behavior of RC beams. Innovat. Infrastruct. Solut. 7, 84 (2022). https://doi.org/10.1007/s41062-021-00686-8

    Article  Google Scholar 

  17. Davari, S.M., Malekinejad, M., Rahgozar, R.: An approximate approach for the natural frequencies of tall buildings with trussed-tube system. Innovat. Infrastruct. Solut. 6, 46 (2021). https://doi.org/10.1007/s41062-020-00418-4

    Article  Google Scholar 

  18. Boudaa, S., Khalfallah, S., Hamioud, S.: Dynamic analysis of soil structure interaction by the spectral element method. Innovat. Infrastruct. Solut. 4, 40 (2019). https://doi.org/10.1007/s41062-019-0227-y

    Article  Google Scholar 

  19. Mahmoud, M.A.: Natural frequency of axially functionally graded, tapered cantilever beams with tip masses. Eng. Struct. 187, 34–42 (2019). https://doi.org/10.1016/j.engstruct.2019.02.043

    Article  Google Scholar 

  20. Chen, M., Jin, G., Zhang, Y., Niu, F., Liu, Z.: Three-dimensional vibration analysis of beams with axial functionally graded materials and variable thickness. Compos. Struct. 207, 304–322 (2019). https://doi.org/10.1016/j.compstruct.2018.09.029

    Article  Google Scholar 

  21. Huang, Y., Zhang, M., Rong, H.: Buckling analysis of axially functionally graded and non-uniform beams based on Timoshenko theory. Acta Mech. Solida Sin. 29(2), 200–207 (2016). https://doi.org/10.1016/S0894-9166(16)30108-2

    Article  Google Scholar 

  22. Daraei, B., Shojaee, S., Hamzehei-Javaran, S.: Thermo-mechanical analysis of functionally graded material beams using micropolar theory and higher-order unified formulation. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-022-02143-z

    Article  Google Scholar 

  23. Nguyen, D.K., Bui, T.T.H., Tran, T.T.H., et al.: Large deflections of functionally graded sandwich beams with influence of homogenization schemes. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-022-02140-2

    Article  Google Scholar 

  24. Ellali, M., Bouazza, M., Amara, K.: Thermal buckling of a sandwich beam attached with piezoelectric layers via the shear deformation theory. Arch. Appl. Mech. 92, 657–665 (2022). https://doi.org/10.1007/s00419-021-02094-x

    Article  Google Scholar 

  25. Mohammed, W.W., Abouelregal, A.E., Othman, M.I.A., et al.: Rotating silver nanobeam subjected to ramp-type heating and varying load via Eringen’s nonlocal thermoelastic model. Arch. Appl. Mech. 92, 1127–1147 (2022). https://doi.org/10.1007/s00419-021-02096-9

    Article  Google Scholar 

  26. Pourmansouri, M., Mosalmani, R., Yaghootian, A., et al.: Detecting and locating delamination defect in multilayer pipes using torsional guided wave. Arch. Appl. Mech. 92, 1037–1052 (2022). https://doi.org/10.1007/s00419-021-02091-0

    Article  Google Scholar 

  27. Draiche, K., Bousahla, A.A., Tounsi, A., et al.: An integral shear and normal deformation theory for bending analysis of functionally graded sandwich curved beams. Arch. Appl. Mech. 91, 4669–4691 (2021). https://doi.org/10.1007/s00419-021-02005-0

    Article  Google Scholar 

  28. Liu, X., Chang, L., Banerjee, J.R., Dan, H.: Closed-form dynamic stiffness formulation for exact modal analysis of tapered and functionally graded beams and their assemblies. Int. J. Mech. Sci. 214, 106887 (2022). https://doi.org/10.1016/j.ijmecsci.2021.106887

    Article  Google Scholar 

  29. Chen, S., Geng, R., Li, W.: Vibration analysis of functionally graded beams using a higher-order shear deformable beam model with rational shear stress distribution. Compos. Struct. 277, 114586 (2021). https://doi.org/10.1016/j.compstruct.2021.114586

    Article  Google Scholar 

  30. Mohammadnejad, M., Haji Kazemi, H.: A new and simple analytical approach to determining the natural frequencies of framed tube structures. Struct. Eng. Mech. 65(1), 111–120 (2018)

    Google Scholar 

  31. Huang, Y., Li, X.F.: A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. J. Sound Vib. 329(11), 2291–2303 (2010)

    Article  Google Scholar 

  32. Nikolić, A.: Free vibration analysis of a non-uniform axially functionally graded cantilever beam with a tip body. Arch. Appl. Mech. 87, 1227–1241 (2017). https://doi.org/10.1007/s00419-017-1243-z

    Article  Google Scholar 

  33. Huang, Y., Ouyang, Z.Y.: Exact solution for bending analysis of two-directional functionally graded Timoshenko beams. Arch. Appl. Mech. 90, 1005–1023 (2020). https://doi.org/10.1007/s00419-019-01655-5

    Article  Google Scholar 

  34. Novel Finite Element Technologies for Solids and Structures, Cham, Springer, 2020.

  35. Mazanoglu, K., Guler, S.: Flap-wise and chord-wise vibrations of axially functionally graded tapered beams rotating around a hub. Mech. Syst. Signal. Process. 89, 97–107 (2017). https://doi.org/10.1016/j.ymssp.2016.07.017

    Article  Google Scholar 

  36. Guler, S.: Free vibration analysis of a rotating single edge cracked axially functionally graded beam for flap-wise and chord-wise modes. Eng Struct 242, 112564 (2021). https://doi.org/10.1016/j.engstruct.2021.112564

    Article  Google Scholar 

  37. Aghazadeh, R.E., Cigeroglu, S.D.: Static and free vibration analyses of small-scale functionally graded beams possessing a variable length scale parameter using different beam theories. Eur. J. Mech. A/Solids (2014). https://doi.org/10.1016/j.euromechsol.2014.01.002

    Article  MathSciNet  MATH  Google Scholar 

  38. Mohammadnejad, M.: A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams. Struct. Eng. Mech. 55(3), 655–674 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Mohammadnejad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadnejad, M. Free vibration analysis of axially functionally graded beams using Fredholm integral equations. Arch Appl Mech 93, 961–976 (2023). https://doi.org/10.1007/s00419-022-02308-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02308-w

Keywords

Navigation