Skip to main content
Log in

Heat conduction problem for a half-space medium containing a penny-shaped crack

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper deals with the analytical investigation of the steady-state heat conduction within a semi-infinite medium embedding an insulating penny-shaped crack and subjected to a disk heat source of an arbitrary heat flux distribution. This axisymmetric heat conduction problem is formulated as a mixed boundary value problem, which is then converted to dual integral equations using the Hankel integral transform technique. A solution approach based on the Gegenbauer addition formula is employed to directly reduce the resulting integral equations into an infinite set of simultaneous equations. Closed-form expressions for temperature, heat flux, heat flux intensity factor near the crack tip, and constriction resistance are subsequently derived. Moreover, four practical configurations of heat flux conditions are further investigated and discussed. Sets of dimensionless plots are provided to show the effect of the size and depth of the crack on the thermal fields, heat flux intensity factor, and constriction resistance. Additionally, the validity of the obtained results is tested by comparison with numerical simulations and shows a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Radius of the heat spot, m

\(A, A_j, B_j\) :

Unknown functions

\(A_{mn}^\circ \) :

Matrix elements of the algebraic system

b :

Radius of the penny-shaped crack, m

\(b_m^\circ \) :

Vector elements of the right-hand side of the algebraic system

c :

Dimensionless radius of the penny-shaped crack

d :

Dimensionless depth of the penny-shaped crack

E :

Complete elliptic integral of the second kind

F :

Gauss hypergeometric function

h :

Depth of the penny-shaped crack, m

H :

Heaviside step function

\(H_\nu \) :

Struve function of order \(\nu \)

\(J_\nu \) :

Bessel function of the first kind of order \(\nu \)

k :

Thermal conductivity, W/(m\(\cdot \)K)

K :

Complete elliptic integral of the first kind

\(K_T\) :

Heat flux intensity factor, \({\mathrm{W/m}^{3/2}}\)

q :

Heat flux loading, \({\mathrm{W/m}^2}\)

\(q_0\) :

Constant heat flux, \({\mathrm{W/m}^2}\)

\(q_\textrm{t}\) :

Total heat flux over the contact area, W

\(q_z\) :

Heat flux in the z-direction, \({\mathrm{W/m}^2}\)

\(q_\zeta \) :

Dimensionless Heat flux in the \(\zeta \)-direction

rz :

Radial and axial coordinates, m

\(R_\textrm{c}\) :

Thermal constriction resistance, K/W

si:

Sine integral function

T :

Dimensionless temperature

\(T_n\) :

Chebyshev’s polynomials of the first kind of degree n

\(U_n\) :

Chebyshev’s polynomials of the second kind of degree n

\(\alpha _n\) :

Series coefficients

\(\Gamma \) :

gamma function

\(\delta _{\ell m}\) :

Kronecker delta

\(\zeta , \rho \) :

Dimensionless axial and radial coordinates

\(\theta \) :

Temperature, K

\(\theta _{\textrm{av}}\) :

Average temperature of the contact area, K

References

  1. Kakaç, S., Yener, Y., Naveira-Cotta, C.P.: Heat Conduction. CRC Press, New York (2018)

    Book  Google Scholar 

  2. Hahn, D.W., Özisik, M.N.: Heat Conduction. Wiley, New York (2012)

    Book  Google Scholar 

  3. Cole, K., Beck, J., Haji-Sheikh, A., Litkouhi, B.: Heat Conduction Using Greens Functions. CRC Press, New York (2010)

    Book  MATH  Google Scholar 

  4. Taler, J., Duda, P.: Solving Direct and Inverse Heat Conduction Problems. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  5. Duffy, D.G.: Mixed Boundary Value Problems. CRC Press, New York (2008)

    Book  MATH  Google Scholar 

  6. Dhaliwal, R.S.: Mixed boundary value problem of heat conduction for infinite slab. Appl. Sci. Res. 16(1), 228–240 (1966)

    Article  MATH  Google Scholar 

  7. Srivastava, K., Palaiya, R.: The distribution of thermal stress in a semi-infinite elastic solid containing a penny-shaped crack. Int. J. Eng. Sci. 7(7), 641–666 (1969)

    Article  MATH  Google Scholar 

  8. Gladwell, G.M.L., Barber, J.R.: Thermoelastic contact problems with radiation boundary conditions. Q. J. Mech. Appl. Math. 36(3), 403–417 (1983)

    Article  MATH  Google Scholar 

  9. Leong, M., Choo, S., Tan, L.: The spreading resistance of a homogeneous slab on a high-resistivity substrate: mixed boundary value solutions. Solid-State Electron. 25(9), 877–884 (1982)

    Article  Google Scholar 

  10. Choo, S., Leong, M., Low, W.: The contact resistance at the interface between a disc electrode and an infinite slab: mixed-boundary-value solutions. Solid-State Electron. 29(5), 535–543 (1986)

    Article  Google Scholar 

  11. Itou, S.: Stress intensity factors around a crack parallel to a free surface of a half-plane. Int. J. Fract. 67(2), 179–185 (1994)

    Article  Google Scholar 

  12. Fialko, Y., Khazan, Y., Simons, M.: Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophys. J. Int. 146(1), 181–190 (2001)

    Article  Google Scholar 

  13. Sakamoto, M.: An elastic layer with a penny-shaped crack subjected to internal pressure. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 46(1), 10–14 (2003)

    Article  Google Scholar 

  14. Kebli, B., Madani, F.: The Reissner–Sagoci problem for an interfacial crack in an elastic bilayer medium under torsion of an embedded rigid circular disc. Theor. Appl. Fract. Mech. 110, 102825 (2020)

    Article  Google Scholar 

  15. Zhou, Z., Xu, C., Xu, X., Leung, A.Y.-T.: Finite-element discretized symplectic method for steady-state heat conduction with singularities in composite structures. Numer. Heat Transf. B Fundam. 67(4), 302–319 (2015)

    Article  Google Scholar 

  16. Deng, H., Yan, B., Su, H., Zhang, X., Lv, X.: An interaction integral method for calculating heat flux intensity factor with the XFEM. Int. J. Therm. Sci. 136, 379–388 (2019)

    Article  Google Scholar 

  17. Deng, H., Yan, B., Su, H., Zhang, X., Lv, X.: Study on transient heat flux intensity factor with interaction integral. Int. J. Therm. Sci. 146, 106014 (2019)

    Article  Google Scholar 

  18. Vu, M., Nguyen, S., Vu, M., Tang, A.M., To, V.: Heat conduction and thermal conductivity of 3D cracked media. Int. J. Heat Mass Transf. 89, 1119–1126 (2015)

    Article  Google Scholar 

  19. Tran, A., Vu, M., Nguyen, S., Dong, T., Le-Nguyen, K.: Analytical and numerical solutions for heat transfer and effective thermal conductivity of cracked media. J. Appl. Geophys. 149, 35–41 (2018)

    Article  Google Scholar 

  20. Dhaliwal, R.S.: An axisymmetric mixed boundary value problem for a thick slab. SIAM J. Appl. Math. 15(1), 98–106 (1967)

    Article  MATH  Google Scholar 

  21. Beck, J.V.: Large time solutions for temperatures in a semi-infinite body with a disk heat source. Int. J. Heat Mass Transf. 24(1), 155–164 (1981)

    Article  Google Scholar 

  22. Mehta, R.C., Bose, T.K.: Temperature distribution in a large circular plate heated by a disk heat source. Int. J. Heat Mass Transf. 26(7), 1093–1095 (1983)

    Article  Google Scholar 

  23. Gladwell, G.M.L., Barber, J.R., Olesiak, Z.: Thermal problems with radiation boundary conditions. Q. J. Mech. Appl. Math. 36(3), 387–401 (1983)

    Article  MATH  Google Scholar 

  24. Lemczyk, T.F., Yovanovich, M.M.: Thermal constriction resistance with convective boundary conditions -1. Half-space contacts. Int. J. Heat Mass Transf. 31(9), 1861–1872 (1988)

  25. Lemczyk, T.F., Yovanovich, M.M.: Thermal constriction resistance with convective boundary conditions -2. Layered halfspace contacts. Int. J. Heat Mass Transf. 31(9), 1873–1883 (1988)

  26. Rao, T.V.: Effect of surface layers on the constriction resistance of an isothermal spot. Part I: reduction to an integral equation and numerical results. Heat Mass Transf. 40(6–7), 439–453 (2004)

    Google Scholar 

  27. Rao, T.V.: Effect of surface layers on the constriction resistance of an isothermal spot. Part II: analytical results for thick layers. Heat Mass Transf. 40(6–7), 455–466 (2004)

    Google Scholar 

  28. Laraqi, N., Chahour, E.-K., Monier-Vinard, E., Fahdi, N., Zerbini, C., Nguyen, M.-N.: Simple and accurate correlations for some problems of heat conduction with nonhomogeneous boundary conditions. Therm. Sci. 21(1 Part A), 125–132 (2017)

    Article  Google Scholar 

  29. Li, X.-F., Lee, K.Y.: Effect of heat conduction of penny-shaped crack interior on thermal stress intensity factors. Int. J. Heat Mass Transf. 91, 127–134 (2015)

    Article  Google Scholar 

  30. Li, X.-Y., Li, P.-D., Kang, G.-Z., Chen, W.-Q., Müller, R.: Steady-state thermo-elastic field in an infinite medium weakened by a penny-shaped crack: complete and exact solutions. Int. J. Solids Struct. 84, 167–182 (2016)

    Article  Google Scholar 

  31. Li, P.-D., Li, X.-Y., Kang, G.-Z.: Axisymmetric thermo-elastic field in an infinite space containing a penny-shaped crack under a pair of symmetric uniform heat fluxes and its applications. Int. J. Mech. Sci. 115, 634–644 (2016)

    Article  Google Scholar 

  32. Kebli, B., Baka, Z.: Annular crack in a thermoelastic half-space. J. Therm. Stresses 43(11), 1379–1414 (2020)

    Article  MATH  Google Scholar 

  33. Wang, J., Dai, M., Gao, C.-F.: The effect of interfacial thermal resistance on interface crack subjected to remote heat flux. Z. Angew. Math. Phys. 71(1), 1–21 (2020)

    Article  MATH  Google Scholar 

  34. Sih, G.C.: Heat conduction in the infinite medium with lines of discontinuities. J. Heat Transf. 87(2), 293–298 (1965)

    Article  Google Scholar 

  35. Chao, C., Chang, R.: Steady-state heat conduction problem of the interface crack between dissimilar anisotropic media. Int. J. Heat Mass Transf. 36(8), 2021–2026 (1993)

    Article  MATH  Google Scholar 

  36. Tzou, D.Y.: The singular behavior of the temperature gradient in the vicinity of a macrocrack tip. Int. J. Heat Mass Transf. 33(12), 2625–2630 (1990)

    Article  Google Scholar 

  37. Chiu, T.-C., Tsai, S.-W., Chue, C.-H.: Heat conduction in a functionally graded medium with an arbitrarily oriented crack. Int. J. Heat Mass Transf. 67, 514–522 (2013)

    Article  Google Scholar 

  38. Tsai, S.-W., Chiu, T.-C., Chue, C.-H.: Temperature distribution and heat flow around a crack of arbitrary orientation in a functionally graded medium. J. Eng. Math. 87(1), 123–137 (2014)

    Article  MATH  Google Scholar 

  39. Hara, T., Akiyama, T., Shibuya, T., Koizumi, T.: An axisymmetric contact problem of an elastic layer on a rigid base with a cylindrical hole. JSME Int. J. Ser. I Solid Mech. Strength Mater. 33(4), 461–467 (1990)

    Article  Google Scholar 

  40. Sakamoto, M., Kobayashi, K.: The axisymmetric contact problem of an elastic layer subjected to a tensile stress applied over a circular region. Theor. Appl. Mech. Jpn. 53, 27–36 (2004)

    Google Scholar 

  41. Sakamoto, M., Kobayashi, K.: Axisymmetric indentation of an elastic layer on a rigid foundation with a circular hole. WIT Trans. Eng. Sci. 49 (2005)

  42. Sakamoto, M., Kobayashi, K.: The axisymmetric contact problem of an elastic layer indented by an infinite rigid punch with a circular hole. Theor. Appl. Mech. Jpn. 55, 61–71 (2006)

    Google Scholar 

  43. Sevostianov, I.: Thermal conductivity of a material containing cracks of arbitrary shape. Int. J. Eng. Sci. 44(8–9), 513–528 (2006)

    Article  Google Scholar 

  44. Debnath, L., Bhatta, D.: Integral Transforms and Their Applications. Chapman and Hall/CRC, New York (2015)

    MATH  Google Scholar 

  45. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, London (2014)

    MATH  Google Scholar 

  46. Schneider, G.: Thermal constriction resistance due to arbitrary contacts on a half-space: numerical solution of the Dirichlet problem. In: AIAA Paper No. 78-870, 2nd AIAA/ASME Thermophysics and Heat Transfer Conference, pp. 1–7 (1978)

  47. Madhusudana, C.V., Madhusudana, C.: Thermal Contact Conductance. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  48. Laraqi, N., Ramassamy, H., Rajaoarisoa, O., Wauthier, T., Bauzin, J.-G.: New exact analytical solutions for the transient surface temperature of solids subjected to a non-uniform axisymmetric circular heat source. Int. J. Therm. Sci. 145, 106034 (2019)

    Article  Google Scholar 

  49. Laraqi, N.: Thermal impedance and transient temperature due to a spot of heat on a half-space. Int. J. Therm. Sci. 49(3), 529–533 (2010)

    Article  Google Scholar 

  50. Li, R., Zhong, Y., Tian, B., Liu, Y.: On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates. Appl. Math. Lett. 22(12), 1821–1827 (2009)

    Article  MATH  Google Scholar 

  51. Zhong, Y., Xu, Q.: Analysis bending solutions of clamped rectangular thick plate. Math. Probl. Eng. 2017, 1–6 (2017)

    MATH  Google Scholar 

Download references

Acknowledgements

The support from Directorate-General for Scientific Research and Technological Development (DG-RSDT) of Algerian government in the form of research grant is gratefully acknowledged. The Laboratory of Green and Mechanical Development (LGMD) of National Polytechnic School (ENP) is also gratefully acknowledged for the resources and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Baka.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Derivation of the integral formula (41)

From [45, Eq. (6.522 11)], it is easy to find that

$$\begin{aligned} \int _{0}^{\infty }\xi \,M_n(\xi )\,J_0(\xi \,\rho )\,\textrm{d}\xi = {\left\{ \begin{array}{ll} \displaystyle {\frac{2\,T_{2\,n+1}(\rho /c)}{\pi \,\rho \,\sqrt{c^2-\rho ^2}}},&{} \quad 0<\rho <c,\\ 0, &{} \quad \rho >c, \end{array}\right. } \quad n=0,1,2,\ldots \end{aligned}$$
(A1)

where \(T_n\) is Chebyshev’s polynomials of the first kind of degree n defined by [45, Eq. (8.940 1)] \(T_n(x)=\cos (n\,\arccos \,x)\). Taking the difference between the \((n+1)\textrm{th}\) and \(n\textrm{th}\) equations and using the following recursion formulas [45, Eqs. (8.941 1 and 4)]

$$\begin{aligned}&T_{n-1}(x)=2\,x\,T_n(x)-T_{n+1}(x),\end{aligned}$$
(A2)
$$\begin{aligned}&\left( 1-x^2\right) U_{n-1}(x)=x\,T_n(x)-T_{n+1}(x), \end{aligned}$$
(A3)

yield

$$\begin{aligned} \int _{0}^{\infty }N_n(\xi )\,J_0(\xi \,\rho )\,\textrm{d}\xi = {\left\{ \begin{array}{ll} \displaystyle {\frac{4\,\sqrt{c^2-\rho ^2}}{\pi \,\rho \,c^2}\,U_{2\,n+1}(\rho /c)},&{}\quad 0<\rho <c,\\ 0, &{} \quad \rho >c, \end{array}\right. }\quad n=0, 1, 2,\ldots \end{aligned}$$
(A4)

Asymptotic expansion formulas of \(\scriptstyle {N_n}\) and \(\scriptstyle {Y_m}\)

For large values of \(\xi \), the asymptotic expansion of the Bessel function \(J_{\nu }\) reads [45, Eq. (8.451 1), \(\nu =1\)]

$$\begin{aligned}&J_\nu (\xi )\!=\!\sqrt{\dfrac{2}{\pi \,\xi }}\left[ \cos \!\left( \xi -\left( 2\,\nu +1\right) \dfrac{\pi }{4}\right) - \dfrac{4\,\nu ^2-1}{8\,\xi }\,\sin \!\left( \xi -\left( 2\,\nu +1\right) \dfrac{\pi }{4}\right) +O\!\left( \dfrac{1}{\xi ^2}\right) \right] . \end{aligned}$$
(B1)

As \(M_n(\xi )=J_{n+1/2}\left( \xi \,c/2\right) \,J_{-n-1/2}(\xi \,c/2)\) and \(X_m(\xi )=J^2_m\left( \xi \,c/2\right) \), then, we use Eq. (B1) along with appropriate trigonometric identities stated below

$$\begin{aligned}&\cos (x)\,\cos (y)=\left[ \cos (x+y)+\cos (x-y)\right] /2,\end{aligned}$$
(B2)
$$\begin{aligned}&\cos (x)\,\sin (y)=\left[ \sin (x+y)-\sin (x-y)\right] /2,\end{aligned}$$
(B3)
$$\begin{aligned}&\cos (x+y)=\cos (x)\,\cos (y)-\sin (x)\,\sin (y),\end{aligned}$$
(B4)
$$\begin{aligned}&\sin (x+y)=\cos (x)\,\sin (y)+\sin (x)\,\cos (y), \end{aligned}$$
(B5)

to get the following asymptotic expansions of \(M_n\) and \(X_m\)

$$\begin{aligned}&M_n(\xi )=\dfrac{2}{\pi \,\xi \,c}\left[ \sin (\xi \,c)+\dfrac{2\,n\left( n+1\right) \cos (\xi \,c)}{\xi \,c}\right] +O\!\left( \dfrac{1}{\xi ^3}\right) , \end{aligned}$$
(B6)
$$\begin{aligned}&X_m(\xi )=\dfrac{2}{\pi \,\xi \,c}\left[ 1+(-1)^m\,\sin (\xi \,c) +\dfrac{(-1)^m\left( 4\,m^2-1\right) \cos (\xi \,c)}{2\,\xi \,c}\right] +O\!\left( \dfrac{1}{\xi ^3}\right) . \end{aligned}$$
(B7)

Substituting Eqs. (B6) and (B7) in the equations \(N_n(\xi )=\xi \left[ M_n(\xi )-M_{n+1}(\xi )\right] \) and \(Y_m(\xi )=\xi \left[ X_m(\xi )-X_{m+2}(\xi )\right] \), respectively, yields

$$\begin{aligned}&N_n(\xi )=-\dfrac{8\left( n+1\right) \cos (\xi \,c)}{\pi \,\xi \,c^2}+O\!\left( \dfrac{1}{\xi ^2}\right) , \end{aligned}$$
(B8)
$$\begin{aligned}&Y_m(\xi )=-\dfrac{16\,(-1)^m\left( m+1\right) \cos (\xi \,c)}{\pi \,\xi \,c^2}+O\!\left( \dfrac{1}{\xi ^2}\right) . \end{aligned}$$
(B9)

Calculation of \(\scriptstyle {\varphi _H}\) and \(\scriptstyle {\int _{0}^{\infty } \xi ^{-1}\,\varphi _H(\xi )\,J_1(\xi )\,\textrm{d}\xi }\)

In Table 8, we provide final expressions of \(\varphi _H\) and \(\int _{0}^{\infty } \xi ^{1}\,\varphi _H(\xi )\,J_1(\xi )\,\textrm{d}\xi \) corresponding to each case of heat flux loading.

Table 8 Expressions of \(\varphi _H\) and \(\int _{0}^{\infty } \xi ^{-1}\,\varphi _H(\xi )\,J_1(\xi )\,\textrm{d}\xi \) for different configurations of heat flux loading

Evaluation of \(\scriptstyle {I}\) and \(\scriptstyle {\partial I/\partial \zeta }\)

1.1 D.1 Case (a): uniform loading

In this case, we have \(I(\rho ,\zeta )=\int _{0}^{\infty } \xi ^{-1}\,\textrm{e}^{-\xi \left( \zeta +d\right) }\,J_0(\xi \,\rho )\,J_1(\xi )\,\textrm{d}\xi \).

For \(\zeta =-d\), using [45, Eqs. (6.574 1 and 2)], it yields

$$\begin{aligned} I(\rho ,-d)=\int _{0}^{\infty } \xi ^{-1}\,J_0(\xi \,\rho )\,J_1(\xi )\,\textrm{d}\xi = {\left\{ \begin{array}{ll} \,F\!\left( \dfrac{1}{2},\,-\dfrac{1}{2};\,1;\,\rho ^2\right) , \quad &{} \quad \rho \le 1, \\ \,\dfrac{1}{2\,\rho }F\!\left( \dfrac{1}{2},\,\dfrac{1}{2};\,2;\,\rho ^{-2}\right) , \quad &{} \quad \rho >1, \end{array}\right. } \end{aligned}$$
(D1)

where F denotes the Gauss hypergeometric function defined by [45, Eq. (9.14)]

$$\begin{aligned}&F\Big (\alpha ,\,\beta ;\,\gamma ;\,x\Big ) =\sum _{n=0}^{\infty }\frac{\left( \alpha \right) _{n} \left( \beta \right) _{n}}{\left( \gamma \right) _{n}}\,\frac{x^{n}}{n!},\quad \text {with} \quad \left( \alpha \right) _{n}=\frac{\Gamma (\alpha +n)}{\Gamma (\alpha )}, \qquad \left| x\right| <1. \end{aligned}$$
(D2)

The relation (D1) can be simplified by expressing the Gauss hypergeometric function in terms of the complete elliptic integrals of the first and second kinds [45, p. 396]

$$\begin{aligned}&K(y)=\int _{0}^{\pi /2} \dfrac{\textrm{d}x}{\sqrt{1-y^2\,\sin ^2x}},\end{aligned}$$
(D3)
$$\begin{aligned}&E(y)=\int _{0}^{\pi /2} \sqrt{1-y^2\,\sin ^2x}\,\textrm{d}x. \end{aligned}$$
(D4)

In view of [45, Eqs. (9.137 13) and (9.131 1)], we have

$$\begin{aligned}&\dfrac{\rho }{2}\,F\!\left( \dfrac{1}{2},\,\dfrac{1}{2};\,2;\,\rho ^2\right) =\dfrac{1-\rho ^2}{\rho }\left[ F\!\left( \dfrac{3}{2},\,\dfrac{1}{2};\,1;\,\rho ^2\right) -F\!\left( \dfrac{1}{2},\,\dfrac{1}{2};\,1;\,\rho ^2\right) \right] ,\end{aligned}$$
(D5)
$$\begin{aligned}&\left( 1-\rho ^2\right) F\!\left( \dfrac{3}{2},\,\dfrac{1}{2};\,1;\,\rho ^2\right) =F\!\left( -\dfrac{1}{2},\,\dfrac{1}{2};\,1;\,\rho ^2\right) . \end{aligned}$$
(D6)

Then, knowing from [45, Eqs. (8.114 1) and (8.113 1)] that

$$\begin{aligned}&F\!\left( \dfrac{1}{2},\,-\dfrac{1}{2};\,1;\,\rho ^2\right) =F\!\left( -\dfrac{1}{2},\,\dfrac{1}{2};\,1;\,\rho ^2\right) = \dfrac{2}{\pi }\,E(\rho ),\end{aligned}$$
(D7)
$$\begin{aligned}&F\!\left( \dfrac{1}{2},\,\dfrac{1}{2};\,1;\,\rho ^2\right) =\dfrac{2}{\pi }\,K(\rho ), \end{aligned}$$
(D8)

one obtains

$$\begin{aligned} I(\rho ,-d)= {\left\{ \begin{array}{ll} \,\dfrac{2}{\pi }\,E(\rho ), \quad &{} \quad \rho \le 1, \\ \,\dfrac{2\,\rho }{\pi }\left[ E\!\left( 1/\rho \right) - \left( 1-1/\rho ^2\right) K\!\left( 1/\rho \right) \right] , \quad &{} \quad \rho >1. \end{array}\right. } \end{aligned}$$
(D9)

For \(\rho =0\), we use [45, Eq. (6.623 3)] to get

$$\begin{aligned} I(0,\zeta )=\int _{0}^{\infty } \xi ^{-1}\,\textrm{e}^{-\xi \left( \zeta +d\right) }\,J_1(\xi )\,\textrm{d}\xi = -\left( \zeta +d\right) +\sqrt{\left( \zeta +d\right) ^2+1}. \end{aligned}$$
(D10)

Differentiating the previous equation with respect of \(\zeta \), we obtain

$$\begin{aligned} \dfrac{\partial I}{\partial \zeta }(0,\zeta ) = \dfrac{\zeta +d}{\sqrt{\left( \zeta +d\right) ^2+1}}-1. \end{aligned}$$
(D11)

For \(\zeta >-d\) and \(\rho >0\), I and \(\partial I/\partial \zeta \) may be evaluated numerically.

1.2 D.2 Case (b): triangular loading

In this case, I and \(\partial I/\partial \zeta \) are calculated numerically.

1.3 D.3 Case (c): semi-elliptic loading

In this case, we have \(I(\rho ,\zeta )=\dfrac{3\,\sqrt{\pi }}{2\,\sqrt{2}}\displaystyle {\int _{0}^{\infty } \xi ^{-3/2}\,\textrm{e}^{-\xi \left( \zeta +d\right) }\,J_0(\xi \,\rho )\,J_{3/2}(\xi )\,\textrm{d}\xi }\).

For \(\zeta =-d\), using [45, Eqs. (6.574 1 and 2)], it yields

$$\begin{aligned} I(\rho ,-d)&=\dfrac{3\,\sqrt{\pi }}{2\,\sqrt{2}}\int _{0}^{\infty } \xi ^{-3/2}\,J_0(\xi \,\rho )\,J_{3/2}(\xi )\,\textrm{d}\xi \nonumber \\&= {\left\{ \begin{array}{ll} \dfrac{3\,\pi }{8}F\!\left( \dfrac{1}{2},\,-1;\,1;\,\rho ^2\right) ,&{}\quad \rho \le 1,\\ \dfrac{1}{2\,\rho }F\!\left( \dfrac{1}{2},\,\dfrac{1}{2};\,\dfrac{5}{2};\,\rho ^{-2}\right) , &{}\quad \rho >1. \end{array}\right. } \end{aligned}$$
(D12)

For \(\zeta >-d\), I and its derivative with respect to \(\zeta \) are calculated numerically.

1.4 D.4 Case (d): loading involving singularity

In this case, we have \(I(\rho ,\zeta )=\displaystyle {\dfrac{1}{2}\int _{0}^{\infty } \xi ^{-1}\,\textrm{e}^{-\xi \left( \zeta +d\right) }\,\sin (\xi )\,J_0(\xi \,\rho )\,\textrm{d}\xi }\).

For \(\zeta =-d\), using [45, Eq. (6.693 6)] and taking in to account that \(\textrm{arccosec}\,\rho =\arcsin (1/\rho )\), it yields

$$\begin{aligned} I(\rho ,-d)=\dfrac{1}{2}\int _{0}^{\infty } \xi ^{-1}\,\sin (\xi )\,J_0(\xi \,\rho )\,\textrm{d}\xi = {\left\{ \begin{array}{ll} \dfrac{\pi }{4}, &{} \quad \rho \le 1,\\ \dfrac{\arcsin (1/\rho )}{2},&{} \quad \rho >1. \end{array}\right. } \end{aligned}$$
(D13)

For \(\zeta >-d\), we use [45, Eq. (6.752 1)], to get

$$\begin{aligned} I(\rho ,\zeta )=\dfrac{1}{2}\arcsin \left( \dfrac{2}{\kappa ^-+\kappa ^+}\right) , \end{aligned}$$
(D14)

where \(\kappa ^\pm =\sqrt{\left( \rho \pm 1\right) ^2+\left( \zeta +d\right) ^2}\).

By differentiating Eq. (D14) with respect to \(\zeta \), we obtain

$$\begin{aligned} \dfrac{\partial I}{\partial \zeta }(\rho ,\zeta ) = -\dfrac{\zeta +d}{\kappa ^-\,\kappa ^+\sqrt{2\left[ \rho ^2+\left( \zeta +d\right) ^2+\kappa ^-\,\kappa ^+-1\right] }}. \end{aligned}$$
(D15)

It is worth mentioning that, for \(\zeta >1-d\), we can alternatively evaluate I and \(\partial I/\partial \zeta \) in the first and third case by using [45, Eq. (6.626 1)].

Half-space medium subjected to a circular heat spot

The boundary conditions of a half-space heated by an arbitrary heat flux are given by Eqs. (11) and (16), where the superscripts (1) and (2) has been omitted here since the medium is continuous. Using the Hankel transform technique, the temperature expression satisfying the governing partial differential equation of this problem can be obtained as

$$\begin{aligned}&T(\rho ,\zeta )=\int _{0}^{\infty } A(\xi )\,\textrm{e}^{-\xi \,\zeta }\,J_0(\xi \,\rho )\,\textrm{d}\xi , \end{aligned}$$
(E1)

where A is an unknown function to be determined. Thereafter, the temperature derivative with respect to \(\zeta \) is

$$\begin{aligned}&\frac{\partial T}{\partial \zeta }(\rho ,\zeta )=-\int _{0}^{\infty } \xi \,A(\xi )\,\textrm{e}^{-\xi \,\zeta }\,J_0(\xi \,\rho )\,\textrm{d}\xi . \end{aligned}$$
(E2)

Using the boundary condition (11) and Hankel transform theorem, we obtain

$$\begin{aligned}&A(\xi )=\varphi _H(\xi )\,\textrm{e}^{-\xi \,d}. \end{aligned}$$
(E3)

Substitution Eq. (E3) into Eq. (E1) leads to the following explicit formulas of the scaled temperature

$$\begin{aligned}&T(\rho ,\zeta )=I(\rho ,\zeta ), \end{aligned}$$
(E4)

where I is given by Eq. (38).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baka, Z., Kebli, B. Heat conduction problem for a half-space medium containing a penny-shaped crack. Arch Appl Mech 93, 635–662 (2023). https://doi.org/10.1007/s00419-022-02291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02291-2

Keywords

Navigation