Skip to main content
Log in

A self-starting dissipative alternative to the central difference methods

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper focuses mainly on developing single-step explicit integration algorithms considering the implicit treatment of velocity. A novel explicit algorithm (GSSI) is proposed and recommended as a self-starting dissipative alternative to the central difference methods in transient analysis. GSSI not only shares the same advantages as the central difference methods, such as second-order accuracy and computational cost, but also achieves flexible dissipation control and self-starting property. Remarkably, GSSI provides a significantly larger stability bound than the central difference methods in the damped case. GSSI imposes two algorithmic parameters (\( \rho _s \) and \( \rho _b \)) to flexibly adjust numerical dissipation at the bifurcation point. In general, the \( \rho _b \) controls numerical dissipation at the bifurcation point, while the \(\rho _s \) further adjusts the amount of dissipation in the low-frequency range. Spectral analysis and numerical examples are given solved to show the superiority of GSSI over the existing single-step explicit methods with respect to accuracy, stability, and dissipation control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications (2000)

  2. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Element Analysis, 4th edn. Wiley (2001)

  3. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 3rd edn. Wiley (2016)

  4. Dokainish, M.A., Subbaraj, K.: A survey of direct time-integration methods in computational structural dynamics—I. Explicit methods. Comput. Struct. 32(6), 1371–1386 (1989)

    Article  MATH  Google Scholar 

  5. Subbaraj, K., Dokainish, M.A.: A survey of direct time-integration methods in computational structural dynamics—II. Implicit methods. Comput. Struct. 32(6), 1387–1401 (1989)

    Article  MATH  Google Scholar 

  6. Maheo, L., Grolleau, V., Rio, G.: Numerical damping of spurious oscillations: a comparison between the bulk-viscosity method and the Tchamwa–Wielgosz dissipative explicit scheme. Comput. Mech. 51(1), 109–128 (2013)

    Article  MATH  Google Scholar 

  7. Rezaiee-Pajand, M., Karimi-Rad, M.: A new explicit time integration scheme for nonlinear dynamic analysis. Int. J. Struct. Stab. Dyn. 16(09), 1550054 (2016)

    Article  MATH  Google Scholar 

  8. Rezaiee-Pajand, M., Karimi-Rad, M.: A family of second-order fully explicit time integration schemes. Comput. Appl. Math. 9, 1–24 (2017)

    MATH  Google Scholar 

  9. Hulbert, G.M., Chung, J.: Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput. Methods Appl. Mech. Eng. 137(2), 175–188 (1996)

    Article  MATH  Google Scholar 

  10. Li, J., Yu, K., Li, X.: An identical second-order single step explicit integration algorithm with dissipation control for structural dynamics. Int. J. Numer. Methods Eng. 122(4), 1089–1132 (2021)

    Article  Google Scholar 

  11. Wood, W., Bossak, M., Zienkiewicz, O.: An alpha modification of Newmark’s method. Int. J. Numer. Methods Eng. 15(10), 1562–1566 (1980)

    Article  MATH  Google Scholar 

  12. Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.: Nonlinear Finite Elements for Continua and Structures, 2nd edn. Wiley (2014)

  13. Borst, R.D., Crisfield, M., Remmers, J., Verhoosel, C.: Nonlinear Finite Element Analysis of Solids and Structures, 2nd edn. Wiley (2012)

  14. Namburu, R.R., Tamma, K.K.: A generalized \(\gamma _s\)-family of self-starting algorithms for computational structural dynamics. AIAA J. (1992). https://doi.org/10.2514/6.1992-2330

    Article  Google Scholar 

  15. Bazzi, G., Anderheggen, E.: The \(\rho \)-family of algorithms for time-step integration with improved numerical dissipation. Earthq. Eng. Struct. Dyn. 10(4), 537–550 (1982)

    Article  Google Scholar 

  16. Großeholz, G., Soares, D., Jr., Von Estorff, O.: A stabilized central difference scheme for dynamic analysis. Int. J. Numer. Methods Eng. 102(11), 1750–1760 (2015)

    Article  MATH  Google Scholar 

  17. Soares, D., Jr., Großeholz, G.: Nonlinear structural dynamic analysis by a stabilized central difference method. Eng. Struct. 173, 383–392 (2018)

    Article  Google Scholar 

  18. Soares, D., Jr.: A locally stabilized central difference method. Finite Elements Anal. Des. 155, 1–10 (2019)

    Article  Google Scholar 

  19. Macek, R.W., Aubert, B.H.: A mass penalty technique to control the critical time increment in explicit dynamic finite element analyses. Earthq. Eng. Struct. Dyn. 24(10), 1315–1331 (1995)

    Article  Google Scholar 

  20. Olovsson, L., Unosson, M., Simonsson, K.: Selective mass scaling for thin walled structures modeled with tri-linear solid elements. Comput. Mech. 34(2), 134–136 (2004)

    Article  MATH  Google Scholar 

  21. Soares, D., Jr.: A novel conjoined space–time formulation for explicit analyses of dynamic models. Eng. Comput. (2022). https://doi.org/10.1007/s00366-021-01565-7

    Article  Google Scholar 

  22. Soares, D., Jr.: Two efficient time-marching explicit procedures considering spatially/temporally-defined adaptive time-integrators. Int. J. Comput. Methods 19(01), 2150051 (2022)

    Article  MATH  Google Scholar 

  23. Noh, G., Bathe, K.J.: An explicit time integration scheme for the analysis of wave propagations. Comput. Struct. 129, 178–193 (2013)

    Article  Google Scholar 

  24. Li, J., Yu, K.: Development of composite sub-step explicit dissipative algorithms with truly self-starting property. Nonlinear Dyn. 103, 1911–1936 (2021)

    Google Scholar 

  25. Ji, Y., Xing, Y.: A three-stage explicit time integration method with controllable numerical dissipation. Arch. Appl. Mech. 91, 3959–3985 (2021)

    Article  Google Scholar 

  26. Li, J., Yu, K., Zhao, R.: Two third-order explicit integration algorithms with controllable numerical dissipation for second-order nonlinear dynamics. Comput. Methods Appl. Mech. Eng. 395, 114945 (2022)

    Article  MATH  Google Scholar 

  27. Rezaiee-Pajand, M., Hashemian, M., Bohluly, A.: A novel time integration formulation for nonlinear dynamic analysis. Aerosp. Sci. Technol. 69, 625–635 (2017)

    Article  Google Scholar 

  28. Yu, K.: A new family of generalized-\(\alpha \) time integration algorithms without overshoot for structural dynamics. Earthq. Eng. Struct. Dyn. 37(12), 1389–1409 (2008)

    Article  Google Scholar 

  29. Li, J., Zhao, R., Yu, K., Li, X.: Directly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamics. Comput. Methods Appl. Mech. Eng. 389, 114274 (2022)

    Article  MATH  Google Scholar 

  30. Hilber, H.M., Hughes, T.J.R.: Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics. Earthq. Eng. Struct. Dyn. 6(1), 99–117 (1978)

    Article  Google Scholar 

  31. Li, J., Yu, K.: A novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamics. Arch. Appl. Mech. 90, 737–772 (2019)

    Article  Google Scholar 

  32. Géradin, M., Rixen, D.: Mechanical Vibrations: Theory and Application to Structural Dynamics, 3rd edn. Wiley, Chichester (2015)

    Google Scholar 

  33. Chung, J., Lee, J.M.: A new family of explicit time integration methods for linear and non-linear structural dynamics. Int. J. Numer. Methods Eng. 37(23), 3961–3976 (1994)

    Article  MATH  Google Scholar 

  34. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(3), 67–94 (1959)

    Article  Google Scholar 

  35. Li, J., Yu, K.: A simple truly self-starting and l-stable integration algorithm for structural dynamics. Int. J. Appl. Mech. 12(10), 2050119 (2020)

    Article  Google Scholar 

  36. Li, J., Yu, K.: A truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamics. Nonlinear Dyn. 102(4), 2503–2530 (2020)

    Article  Google Scholar 

  37. Li, J., Yu, K., Tang, H.: Further assessment of three Bathe algorithms and implementations for wave propagation problems. Int. J. Struct. Stab. Dyn. 21(05), 2150073 (2021)

    Article  Google Scholar 

  38. Yue, B., Guddati, M.N.: Dispersion-reducing finite elements for transient acoustics. J. Acoust. Soc. Am. 118(4), 2132–2141 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11372084 and 12102103), the Heilongjiang Touyan Innovation Team Program, and Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.2020014). The helpful and constructive comments from the referees have led to the improvement of this paper; the authors gratefully acknowledge this assistance. In addition, the second author acknowledges the financial support from the China Scholarship Council (Grant No. 202006120104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinze Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The identity among the classical CD, half-step, and Newmark explicit methods

The identity among the classical CD, half-step, and Newmark explicit methods

First, when the time step \( \varDelta t\) is assumed to be constant, the classical CD method (2) is algebraically identical to the Newmark explicit scheme (4). The classical CD method is rewritten herein as

$$\begin{aligned} \dot{{{\mathbf {U}}}}_{n}&=\frac{1}{2\varDelta t}({{\mathbf {U}}}_{n+1}-{{\mathbf {U}}}_{n-1}) \end{aligned}$$
(A1a)
$$\begin{aligned} \ddot{{{\mathbf {U}}}}_{n}&=\frac{1}{\varDelta t^2}({{\mathbf {U}}}_{n+1}-2{{\mathbf {U}}}_n+{{\mathbf {U}}}_{n-1}). \end{aligned}$$
(A1b)

The displacement vector \( {{\mathbf {U}}}_{n-1}\) can be eliminated in Eq. (A1) to yield

$$\begin{aligned} {{\mathbf {U}}}_{n+1}={{\mathbf {U}}}_{n}+\varDelta t\dot{{{\mathbf {U}}}}_n+\dfrac{1}{2}\varDelta t^2\ddot{{{\mathbf {U}}}}_n, \end{aligned}$$
(A2)

whereas the displacement vector \( {{\mathbf {U}}} _{n+1}\) can also be eliminated in Eq. (A1) to give

$$\begin{aligned} \dot{{{\mathbf {U}}}}_n=\dfrac{{{\mathbf {U}}}_{n}-{{\mathbf {U}}}_{n-1}}{\varDelta t}+\dfrac{1}{2}\varDelta t\ddot{{{\mathbf {U}}}}_n. \end{aligned}$$
(A3)

With the time step \( \varDelta t\) unchanged, Eq. (A3) can go one time step further to give

$$\begin{aligned} \dot{{{\mathbf {U}}}}_{n+1}=\dfrac{{{\mathbf {U}}}_{n+1}-{{\mathbf {U}}}_{n}}{\varDelta t}+\dfrac{1}{2}\varDelta t\ddot{{{\mathbf {U}}}}_{n+1}. \end{aligned}$$
(A4)

Substituting Eq. (A2) into Eq. (A4) to eliminate \( {{\mathbf {U}}} _{n+1}\) yields

$$\begin{aligned} \dot{{{\mathbf {U}}}}_{n+1}=\dot{{{\mathbf {U}}}}_n+\dfrac{1}{2}\varDelta t\left( \ddot{{{\mathbf {U}}}}_n+\ddot{{{\mathbf {U}}}}_{n+1}\right) . \end{aligned}$$
(A5)

As one can see, Eqs. (A2) and (A5) are integration formulas of the Newmark explicit method (4). Hence, the classical CD method is algebraically identical to the Newmark explicit scheme when the time step remains unchanged.

Next, when the time step \( \varDelta t\) is assumed to be constant, the half-step scheme (2) is algebraically identical to the Newmark explicit method (4). The half-step scheme (3) is rewritten as follows.

$$\begin{aligned} \dot{{{\mathbf {U}}}}_{n+1/2}&=\dot{{{\mathbf {U}}}}_{n-1/2}+\varDelta t\ddot{{{\mathbf {U}}}}_n \end{aligned}$$
(A6a)
$$\begin{aligned} {{\mathbf {U}}}_{n+1}&={{\mathbf {U}}}_n+\varDelta t\dot{{{\mathbf {U}}}}_{n+1/2} \end{aligned}$$
(A6b)
$$\begin{aligned} \dot{{{\mathbf {U}}}}_{n+1}&=\dot{{{\mathbf {U}}}}_{n+1/2}+\frac{\varDelta t}{2}\ddot{{{\mathbf {U}}}}_{n+1} \end{aligned}$$
(A6c)

The schemes above can be re-organized as

$$\begin{aligned} {{\mathbf {U}}}_{n+1}&={{\mathbf {U}}}_n+\varDelta t\dot{{{\mathbf {U}}}}_{n+1}-\dfrac{1}{2}\varDelta t^2\ddot{{{\mathbf {U}}}}_{n+1} \end{aligned}$$
(A7a)
$$\begin{aligned} \dot{{{\mathbf {U}}}}_{n+1}&=\dot{{{\mathbf {U}}}}_{n-1/2}+\varDelta t\ddot{{{\mathbf {U}}}}_n+\frac{\varDelta t}{2}\ddot{{{\mathbf {U}}}}_{n+1}. \end{aligned}$$
(A7b)

With the time step \( \varDelta t\) unchanged, Eq. (A6b) and Eq. (A7a) can go one integration step back to give

$$\begin{aligned} {{\mathbf {U}}}_n&={{\mathbf {U}}}_{n-1}+\varDelta t\dot{{{\mathbf {U}}}}_{n-1/2} \end{aligned}$$
(A8a)
$$\begin{aligned} {{\mathbf {U}}}_n&={{\mathbf {U}}}_{n-1}+\varDelta t\dot{{{\mathbf {U}}}}_n-\dfrac{1}{2}\varDelta t^2\ddot{{{\mathbf {U}}}}_n. \end{aligned}$$
(A8b)

Equation (A8) reveals that the velocity vector \( \dot{{{\mathbf {U}}}}_{n-1/2}\) should be calculated as \( \dot{{{\mathbf {U}}}}_{n-1/2}=\dot{{{\mathbf {U}}}}_n-\dfrac{1}{2}\varDelta t\ddot{{{\mathbf {U}}}}_n \), and thus Eq. (A7b) can be further simplified as

$$\begin{aligned} \dot{{{\mathbf {U}}}}_{n+1}=\dot{{{\mathbf {U}}}}_n+\dfrac{1}{2}\varDelta t\left( \ddot{{{\mathbf {U}}}}_n+\ddot{{{\mathbf {U}}}}_{n+1}\right) . \end{aligned}$$
(A9a)

Substituting the equation above into Eq. (A7a) to eliminate \( \dot{{{\mathbf {U}}}} _{n+1}\) yields

$$\begin{aligned} {{\mathbf {U}}}_{n+1}={{\mathbf {U}}}_{n}+\varDelta t\dot{{{\mathbf {U}}}}_n+\dfrac{1}{2}\varDelta t^2\ddot{{{\mathbf {U}}}}_n. \end{aligned}$$
(A9b)

Obviously, Eqs. (A9a) and (A9b) are integration formulas of the Newmark explicit method. Hence, the half-step scheme (3) is algebraically identical to the Newmark explicit method when the time step remains unchanged.

Finally, it is concluded that the classical CD, half-step, and Newmark explicit methods are algebraically identical to each other on the condition that the time step \( \varDelta t\) remains unchanged.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Li, J. & Yu, K. A self-starting dissipative alternative to the central difference methods. Arch Appl Mech 93, 571–603 (2023). https://doi.org/10.1007/s00419-022-02286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02286-z

Keywords

Navigation