Skip to main content
Log in

Memory response of hyperbolic two-temperature thermoelastic diffusive half-space with variable material properties

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the manufacturing of micro-electromechanical, geotectonic, nuclear devices, etc., mathematical modeling of thermoelastic diffusion phenomenon has significant importance. In this light, the present problem studies two-dimensional thermodiffusive elastic half-space with variable thermal conductivity and diffusivity. Adopting hyperbolic two-temperature dual-phase-lag thermoelastic diffusion model based on memory-dependent derivatives augments the novelty of the present work. Initially, the medium is kept quiescent and the bounding surface of half-space is subjected to thermal, mechanical, and concentration loadings. Linearizing heat conduction and mass diffusion equations using Kirchhoff’s transformation method, the problem is solved using eigenvalue approach in Laplace–Fourier transformed domain with initial and boundary restrictions. To obtain the results in space-time domain, numerical inversion technique is applied. The impact of various parameters on dimensionless field variables involved in the study is analyzed graphically. The results reveal that nonlinear kernel function and greater values of time delay contribute to smoother flow of temperature change and concentration in the medium. With classical two-temperature theory, physical quantities attain comparatively lower magnitudes than with one-temperature or hyperbolic two-temperature theories. The variable thermal conductivity and diffusivity have an increasing impact on temperature change and concentration, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\lambda , ~ \mu \) :

Lamè’s elastic constants

\(T_0\) :

Reference temperature (constant temperature of the medium at an unstrained state)

\(T_d\) :

Absolute thermodynamic temperature

\(T_\textrm{c}\) :

Absolute conductive temperature

\(T=T_d-T_0\) :

Change in thermodynamic temperature

\(\phi =T_\textrm{c}-T_0\) :

Change in conductive temperature

\(K(\phi )\) :

Variable thermal conductivity

\(K_0\) :

Temperature-independent thermal conductivity

\(u_i\) :

Components of displacement vector

\(e_{ij} \) :

Components of strain tensor

\(\sigma _{ij}\) :

Components of stress tensor

\(\rho \) :

Mass density

\(C_e\) :

Specific heat at constant strain

a :

Measurement of thermodiffusive effect

b :

Measure of diffusive effect

P :

Chemical potential per unit mass

C :

Concentration of diffusive material

D(C):

Variable diffusivity

\(D_0\) :

Concentration-independent diffusivity

S :

Entropy per unit mass

\(\delta ^*\) :

(Hyperbolic) two-temperature parameter

\(\tau _q, \tau _\phi \) :

Thermal relaxation times

\(\tau _\eta , \tau _P\) :

Diffusion relaxation times

\(\delta _{ij} \) :

Kronecker’s delta

\((\beta _1,\beta _2)=(3\lambda +2\mu )(\alpha _t,\alpha _c)\); \(\alpha _t\), \(\alpha _c\) :

\(\alpha _t\), \(\alpha _c\) are the coefficients of linear thermal and diffusion expansion, respectively.

References

  1. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MATH  Google Scholar 

  2. Lord, H.W., Shulman, Y.: Generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids. 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  3. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  4. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. 1991(432), 171–194 (1885)

    MATH  Google Scholar 

  5. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15(2), 253–264 (1992)

    Article  Google Scholar 

  6. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–209 (1993)

    Article  MATH  Google Scholar 

  7. Tzou, D.Y.: A unified approach for heat conduction from macro-to micro-scales. J. Heat. Transf. 117(1), 8–16 (1995)

    Article  Google Scholar 

  8. El-Karamany, A.S., Ezzat, M.A.: On the dual-phase-lag thermoelasticity theory. Meccanica 49(1), 79–89 (2014)

    Article  MATH  Google Scholar 

  9. Khamis, A.K., El-Bary, A.A., Lotfy, K., Bakali, A.: Photothermal excitation processes with refined multi dual phase-lags theory for semiconductor elastic medium. Alex. Eng. J. 59(1), 1–9 (2020)

    Article  Google Scholar 

  10. Lotfy, K., Abo-Dahab, S.M., Tantawy, R., Anwar, N.: Thermomechanical response model on a reflection photothermal diffusion waves (RPTD) for semiconductor medium. Silicon 12(1), 199–209 (2020)

    Article  Google Scholar 

  11. Mahdy, A.M.S., Lotfy, K., Hassan, W., El-Bary, A.A.: Analytical solution of magneto-photothermal theory during variable thermal conductivity of a semiconductor material due to pulse heat flux and volumetric heat source. Waves Rand. Complex Media 31(6), 2040–2057 (2021)

    Article  MATH  Google Scholar 

  12. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Thermo-viscoelastic materials with fractional relaxation operators. Appl. Math. Model. 39(23–24), 7499–7512 (2015)

    Article  MATH  Google Scholar 

  13. El-Karamany, A.S., Ezzat, M.A.: On the three-phase-lag linear micropolar thermoelasticity theory. Eur. J. Mech. A/Solids 40, 198–208 (2013)

    Article  Google Scholar 

  14. Debnath, L.: A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 35(4), 487–501 (2004). https://doi.org/10.1080/00207390410001686571

    Article  Google Scholar 

  15. Ezzat, M.A., El-Bary, A.A., Fayik, M.A.: Fractional Fourier law with three-phase lag of thermoelasticity. Mech. Adv. Mater. Struct. 20(8), 593–602 (2013)

    Article  Google Scholar 

  16. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  17. Wang, J.L., Li, H.F.: Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput. Math. Appl. 62(3), 1562–1567 (2011)

    Article  MATH  Google Scholar 

  18. Gilhotra, G., Sharma, P.K.: A spherical cavity problem with nonlocal elastic effect considering memory-dependent thermoelastic diffusion and laser pulse heat source. Waves Rand. Complex Media (2021). https://doi.org/10.1080/17455030.2021.1976436

    Article  Google Scholar 

  19. Gurtin, M.E., Williams, W.O.: On the Clausius-Duhem inequality. Zeitschrift Angewandte Mathematik und Physik 17(5), 626–633 (1966)

    Article  Google Scholar 

  20. Gurtin, M.E., Williams, W.O.: An axiomatic foundation for continuum thermodynamics. Arch. Ration. Mech. Anal. 26(2), 83–117 (1967)

    Article  MATH  Google Scholar 

  21. Chen, P.J., Gurtin, M.E.: On a theory of heat conduction involving two temperatures. Zeitschrift für angewandte Mathematik und Physik ZAMP 19(4), 614–627 (1968)

    Article  MATH  Google Scholar 

  22. Chen, P.J., Williams, W.O.: A note on non-simple heat conduction. Zeitschrift für angewandte Mathematik und Physik ZAMP 19(6), 969–970 (1968)

    Article  Google Scholar 

  23. Chen, P.J., Gurtin, M.E., Williams, W.O.: On the thermodynamics of non-simple elastic materials with two temperatures. Zeitschrift für angewandte Mathematik und Physik ZAMP 20(1), 107–112 (1969)

    Article  MATH  Google Scholar 

  24. Quintanilla, R.: On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mechanica 168(1), 61–73 (2004)

    Article  MATH  Google Scholar 

  25. Youssef, H.M.: Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71(3), 383–390 (2006)

    Article  MATH  Google Scholar 

  26. Youssef, H.M., El-Bary, A.A.: Theory of hyperbolic two-temperature generalized thermoelasticity. Mater. Phys. Mech. 40(2), 158–171 (2018)

    Google Scholar 

  27. Lotfy, K., El-Bary, A.A.: Magnetic-thermal-elastic waves under the impact of induced laser pulses and hyperbolic two temperature theory with memory-dependent derivatives (MDD). Waves Rand. Complex Media (2022). https://doi.org/10.1080/17455030.2021.2025278

    Article  MATH  Google Scholar 

  28. Nowacki, W. et al.: Dynamic problems of thermodiffusion in elastic solids (1974)

  29. Sherief, H.H., Hamza, F.A., Saleh, H.A.: The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 42(5–6), 591–608 (2004)

    Article  MATH  Google Scholar 

  30. El-Karamany, A.S., Ezzat, M.A.: Thermoelastic diffusion with memory-dependent derivative. J. Therm. Stress. 39(9), 1035–1050 (2016)

    Article  Google Scholar 

  31. Othman, M.I., Sur, A.: Transient response in an elasto-thermo-diffusive medium in the context of memory-dependent heat transfer. Waves Rand. Complex Media 31(6), 2238–2261 (2021)

    Article  MATH  Google Scholar 

  32. Gilhotra, G., & Sharma, P. K. (2022). Visco-thermodiffusive elastic interactions in plate within the framework of two-temperature fractional thermoelastic models. Indian J. Phys. 1–13

  33. Xue, Z.N., Yu, Y.J., Li, X.Y., Tian, X.G.: Study of a generalized thermoelastic diffusion bi-layered structures with variable thermal conductivity and mass diffusivity. Waves Rand. Complex Media 29(1), 34–53 (2019)

    Article  MATH  Google Scholar 

  34. Ezzat, M.A., El-Bary, A.A.: Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. Int. J. Therm. Sci. 108, 62–69 (2016)

    Article  Google Scholar 

  35. Othman, M.I., Lotfy, K., Farouk, R.M.: Transient disturbance in a half-space under generalized magneto-thermoelasticity with internal heat source. Acta Physica Polonica A 116(2), 185–192 (2009)

    Article  Google Scholar 

  36. Othman, M.I., Lotfy, K.: Two-dimensional problem of generalized magneto-thermoelasticity with temperature dependent elastic moduli for different theories. Multidiscip. Model. Mater. Struct. (2009)

  37. Abo-Dahab, S.M., Lotfy, K.: Generalized magneto-thermoelasticity with fractional derivative heat transfer for a rotation of a fibre-reinforced thermoelastic. J. Comput. Theor. Nanosci. 12(8), 1869–1881 (2015)

    Article  Google Scholar 

  38. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Generalized thermo-viscoelasticity with memory-dependent derivatives. Int. J. Mech. Sci. 89, 470–475 (2014)

    Article  Google Scholar 

  39. Ezzat, M.A., El-Bary, A.A.: Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature. J. Mech. Sci. Technol. 29(10), 4273–4279 (2015)

    Article  Google Scholar 

  40. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer. Microsyst. Technol. 24(2), 951–961 (2018)

    Article  Google Scholar 

  41. Ezzat, M.A., El-Karamany, A.S., Ezzat, S.M.: Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer. Nucl. Eng. Design 252, 267–277 (2012)

    Article  Google Scholar 

  42. Bajpai, A., Sharma, P.K., Kumar, R.: Transient response of a thermo-diffusive elastic thick circular plate with variable conductivity and diffusivity. Acta Mechanica 232(9), 3343–3361 (2021)

    Article  MATH  Google Scholar 

  43. Bajpai, A., Sharma, P.K.: Variable thermal conductivity and diffusivity impact on forced vibrations of thermodiffusive elastic plate. J. Therm. Stress. 44(9), 1169–1190 (2021). https://doi.org/10.1080/01495739.2021.1955640

    Article  Google Scholar 

  44. Sharma, P.K., Bajpai, A., Kumar, R.: Analysis of two temperature thermoelastic diffusion plate with variable thermal conductivity and diffusivity. Waves Rand. Complex Media (2021). https://doi.org/10.1080/17455030.2021.1983232

    Article  Google Scholar 

  45. Li, C., Guo, H., Tian, X., Tian, X.: Transient response for a half-space with variable thermal conductivity and diffusivity under thermal and chemical shock. J. Therm. Stress. 40(3), 389–401 (2017). https://doi.org/10.1080/01495739.2016.1218745

    Article  Google Scholar 

  46. D’Apice, C., Zampoli, V., Chiriţă, S.: On the wave propagation in the thermoelasticity theory with two temperatures. J. Elast. 140(2), 257–272 (2020)

    Article  MATH  Google Scholar 

  47. Mondal, S., Mallik, S.H., Kanoria, M.: Fractional order two-temperature dual-phase-lag thermoelasticity with variable thermal conductivity. Int. Sch. Res. Not. (2014). https://doi.org/10.1155/2014/646049

    Article  Google Scholar 

  48. Mahdy, A.M.S., Lotfy, K., El-Bary, A., Tayel, I.M.: Variable thermal conductivity and hyperbolic two-temperature theory during magneto-photothermal theory of semiconductor induced by laser pulses. Eur. Phys. J. Plus 136(6), 1–21 (2021)

    Article  Google Scholar 

  49. Deswal, S., Choudhary, S.: Two-dimensional interactions due to moving load in generalized thermoelastic solid with diffusion. Appl. Math. Mech. 29(2), 207–221 (2008)

    Article  MATH  Google Scholar 

  50. El-Maghraby, N.M.: Two-dimensional thermoelasticity problem for a thick plate under the action of a body force in two relaxation times. J. Therm. Stress. 32(9), 863–876 (2009). https://doi.org/10.1080/01495730903018531

    Article  Google Scholar 

  51. Geetanjali, G., Bajpai, A., Sharma, P.K.: Impact of variable thermal conductivity and diffusivity on two temperature fractional thermodiffusive elastic half space with dual phase lags. Waves Rand. Complex Media (2022). https://doi.org/10.1080/17455030.2022.2063987

    Article  Google Scholar 

  52. Peng, W., He, T.: Investigation on the generalized thermoelastic-diffusive problem with variable properties in three different memory-dependent effect theories. Waves Rand. Complex Media 32, 1–20 (2020)

    Google Scholar 

  53. Li, C., Guo, H., Tian, X.: Time-domain finite element analysis to nonlinear transient responses of generalized diffusion-thermoelasticity with variable thermal conductivity and diffusivity. Int. J. Mech. Sci. 131, 234–244 (2017)

    Article  Google Scholar 

  54. Singh, B., Sarkar, S.P.: State-space approach on two-temperature three-phase-lag thermoelastic medium with a spherical cavity due to memory-dependent derivative. Arch. Appl. Mech. 91(7), 3273–3290 (2021)

    Article  Google Scholar 

Download references

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Bajpai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geetanjali, G., Bajpai, A. & Sharma, P.K. Memory response of hyperbolic two-temperature thermoelastic diffusive half-space with variable material properties. Arch Appl Mech 93, 467–485 (2023). https://doi.org/10.1007/s00419-022-02276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02276-1

Keywords

Navigation