Skip to main content
Log in

Two-temperature theory in Green–Naghdi thermoelasticity with fractional phase-lag heat transfer

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A mathematical model of two-temperature phase-lag Green–Naghdi thermoelasticty theories based on fractional derivative heat transfer is given. The GN theories as well as the theories of coupled and of generalized thermoelasticity with thermal relaxation follow as limit cases. The resulting non dimensional coupled equations together with the Laplace transforms techniques are applied to a specific problem of a half space subjected to arbitrary heating which is taken as a function of time and is traction free. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The predictions of the theory are discussed and compared with those for the generalized theory of thermoelasticity with one relaxation time. The effects of temperature discrepancy and fractional order parameters on copper-like material are discussed in different types of GN theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\(a_{1} ,a_{2} ,a_{3}\) :

Key numbers, each equals to 0 or 1

x :

(x 1, x 2, x 3), position

t :

Time

\(C_{E}\) :

Specific heat at constant strain

\(k_{ij}\) :

Thermal conductivity tensor

\(k_{ij}^{ * }\) :

Conductivity rate tensor

T :

Temperature

\(T_{o}\) :

Reference temperature

\(u_{i}\) :

Components of displacement vector

\(\text{v}\) :

\(\left[ {(\lambda + 2{\kern 1pt} \mu \,){\kern 1pt} /\,\rho } \right]{\kern 1pt}^{1/2}\), speed of propagation of longitudinal waves

q i :

Components of heat flux vector

e :

\(u_{i,i} ,\) dilatation

a :

Temperature discrepancy

\(\lambda ,\,\mu\) :

Lame’s constants

\(\rho\) :

Density

\(\alpha_{T}\) :

Coefficient of linear thermal expansion

\(\upsilon\) :

Thermal displacement \(\dot{\upsilon } = \theta\)

\(\varepsilon\) :

Thermoelastic coupling parameter

\(\gamma\) :

\((3\lambda + 2\mu )\alpha_{T}\)

\(\delta_{ij}\) :

Kronecker delta function

\(\tau_{o}\) :

Relaxation time

\(\tau_{q}\) :

Phase-lag of the heat flux

\(\tau_{\theta }\) :

Phase-lag of the temperature gradient

\(\tau_{\upsilon }\) :

Phase-lag of the thermal displacement gradient

\(\alpha\) :

Fractional derivative order

\(\sigma_{ij}\) :

Components of stress tensor

\(\eta\) :

\(\rho C_{E} /k\)

\(\theta\) :

\(T - T_{0}\), such that \(\left| {\theta /T_{0} } \right| < < 1\)

\(\phi\) :

Conductive temperature

\(\varphi\) :

\(\phi - \varphi_{0}\), such that \(\left| {\phi /\varphi_{0} } \right| < < 1\)

References

  • Abbas IA (2014a) Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties. Meccanica 48:1697–1708

    Article  MATH  Google Scholar 

  • Abbas IA (2014b) A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity. Appl Math Comput 245:108–115

    MathSciNet  MATH  Google Scholar 

  • Abbas IA (2014c) A problem on functional graded material under fractional order theory of thermoelasticity. Theor Appl Fract Mech 74:18–22

    Article  Google Scholar 

  • Abbas IA (2014d) Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole. J Comput Theor Nanosci 11:380–384

    Article  Google Scholar 

  • Abbas IA (2016) Exact solution for a free vibration of thermoelastic hollow cylinder under GNIII model. Int J Acous Vib 377:452–459

    Google Scholar 

  • Aouadi M, Lazzari B, Nibbi R (2014) A theory of thermoelasticity with diffusion under Green–Naghdi models. ZAMM 94:837–852

    Article  MathSciNet  MATH  Google Scholar 

  • Biot M (1955) Variational principle in irreversible thermodynamics with application to viscoelasticity. Phys Rev 97:1463–1469

    Article  MathSciNet  MATH  Google Scholar 

  • Boley BA, Tolins IS (1962) Transient coupled thermoelastic boundary value problems in the half-space. J Appl Mech 29:637–646

    Article  MathSciNet  MATH  Google Scholar 

  • Chandrasekharaiah DS (1996) note on the uniqueness of solution in the linear theory of thermoelasticity without energy dissipation. J Elast 43:279–283

    Article  MathSciNet  MATH  Google Scholar 

  • Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity, a review of recent literature. Appl Mech Rev 51:705–729

    Article  Google Scholar 

  • Chen PJ, Gurtin ME (1968) On a theory of heat conduction involving two temperatures. ZAMP 19:614–627

    Article  MATH  Google Scholar 

  • Chen PJ, Gurtin ME, Williams WQ (1969) On the thermodynamics of non-simple elastic materials with two temperatures. ZAMP 20:107–112

    Article  MATH  Google Scholar 

  • Chirita S, Ciarletta M (2010) Reciprocal and variational principles in linear thermoelasticity without energy dissipation. Mech Res Commun 37:271–275

    Article  MATH  Google Scholar 

  • Ciarletta M (2009) A theory of micropolar thermoelasticity without energy dissipation. J Therm Stress 22:581–594

    Article  MathSciNet  Google Scholar 

  • El-Karamany AS, Ezzat MA (2002) On the boundary integral formulation of thermo-viscoelasticity theory. Int J Eng Sci 40:1943–1956

    Article  MathSciNet  MATH  Google Scholar 

  • El-Karamany AS, Ezzat MA (2004) Boundary integral equation formulation for the generalized thermoviscoelasticity with two relaxation times. J Appl Math Comput 151:347–362

    Article  MathSciNet  MATH  Google Scholar 

  • El-Karamany AS, Ezzat MA (2009) Uniqueness and reciprocal theorems in linear micropolar electro-magnetic thermoelasticity with two relaxation times. Mech Time Depend Mater 13:93–115

    Article  Google Scholar 

  • El-Karamany AS, Ezzat MA (2011a) On the two-temperature Green–Naghdi thermoelasticity theories. J Therm Stress 34:1207–1226

    Article  Google Scholar 

  • El-Karamany AS, Ezzat MA (2011b) On fractional thermoelastisity. Math Mech Solids 16:334–346

    Article  MathSciNet  MATH  Google Scholar 

  • El-Karamany AS, Ezzat MA (2011c) Convolutional variational principle reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. J Therm Stress 34:264–284

    Article  Google Scholar 

  • El-Karamany AS, Ezzat MA (2013) On the three-phase-lag linear micropolar thermoelasticity theory. Euro J Mech A/Solids 40:198–208

    Article  Google Scholar 

  • El-Karamany AS, Ezzat MA (2014) On the dual-phase-lag thermoelasticity theory. Meccan 49:79–89

    Article  MathSciNet  MATH  Google Scholar 

  • El-Karamany AS, Ezzat MA (2015) Two-temperature Green–Naghdi theory of type III in linear thermoviscoelastic anisotropic solid. Appl Math Model 39:2155–2171

    Article  MathSciNet  Google Scholar 

  • El-Karamany AS, Ezzat MA (2016) On the phase-lag Green–Naghdi thermoelasticity theories. Appl Math Model 40:5643–5659

    Article  MathSciNet  Google Scholar 

  • Ezzat MA (2001) Free convection effects on perfectly conducting fluid. Int J Eng Sci 39:799–819

    Article  MATH  Google Scholar 

  • Ezzat MA (2006) The relaxation effects of the volume properties of electrically conducting viscoelastic material. Mater Sci Eng B 130:11–23

    Article  Google Scholar 

  • Ezzat MA (2011a) Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Phys B 406:30–35

    Article  Google Scholar 

  • Ezzat MA (2011b) Thermoelectric MHD with modified Fourier’s law. Int J Therm Sci 50:449–455

    Article  Google Scholar 

  • Ezzat MA (2012) State space approach to thermoelectric fluid with fractional order heat transfer. Heat Mass Transf 48:71–82

    Article  Google Scholar 

  • Ezzat MA, Abd-Elaal MZ (1997a) State space approach to viscoelastic fluid flow of hydromagnetic fluctuating boundary-layer through a porous medium. ZAMM 77:197–207

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat MA, Abd-Elaal MZ (1997b) Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium. J Frankl Inst 334:685–706

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat MA, El-Bary AA (2009a) On three models of Magnetohydrodynamic free convection flow. Can J Phys 87:1213–1226

    Article  Google Scholar 

  • Ezzat MA, El-Bary AA (2009b) State space approach of two-temperature magneto-thermoelasticity with thermal relaxation in a medium of perfect conductivity. Int J Eng Sci 47:618–630

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat MA, El-Bary AA (2016a) Effects of variable thermal conductivity on Stokes’ flow of a thermoelectric fluid with fractional order of heat transfer. Int J Therm Sci 100:305–325

    Article  Google Scholar 

  • Ezzat MA, El-Bary AA (2016b) Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. Int J Therm Sci 108:62–69

    Article  Google Scholar 

  • Ezzat MA, El-Bary AA (2016c) Modeling of fractional magneto-thermoelasticity for a perfect conducting materials. Smart Struct Syst 18(2016):707–731

    Article  Google Scholar 

  • Ezzat MA, El-Bary AA (2016d) Generalized fractional magneto-thermo-viscoelasticity. Microsyst Technol. doi:10.1007/s00542-016-2904-5

    MATH  Google Scholar 

  • Ezzat MA, El-Bary AA (2016e) Application of fractional order theory of magneto-thermoelasticity to an infinite perfect conducting body with a cylindrical cavity. Microsyst Technol. doi:10.1007/s00542-016-2976-2

    Google Scholar 

  • Ezzat MA, El-Bary AA (2017) Thermoelectric spherical shell with fractional order heat transfer. Microsyst Technol. doi:10.1007/s00542-017-3400-2

    Google Scholar 

  • Ezzat MA, El-Karamany AS (2002a) The uniqueness and reciprocity theorems for generalized thermoviscoelasticity for anisotropic media. J Therm Stress 25:507–522

    Article  MathSciNet  Google Scholar 

  • Ezzat MA, El-Karamany AS (2002b) The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times. Int J Eng Sci 40:1275–1284

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat MA, El-Karamany AS (2003) On uniqueness and reciprocity theorems for generalized thermoviscoelasticity with thermal relaxation. Can J Phys 81:823–833

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS (2009) State space approach of two-temperature magneto-viscoelasticity theory with thermal relaxation in a medium of perfect conductivity. J Therm Stress 32:819–838

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS (2011a) Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures. ZAMP 62:937–952

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat MA, El-Karamany AS (2011b) Theory of fractional order in electro-thermoelasticity. Eur J Mech A/Solid 30:491–500

    Article  MATH  Google Scholar 

  • Ezzat MA, Ezzat SM (2016) Fractional thermoelasticity applications for porous asphaltic materials. Pet Sci 13:550–560

    Article  Google Scholar 

  • Ezzat MA, Zakaria M, Shaker O, Barakat F (1996) State space formulation to viscoelastic fluid flow of magnetohydrodynamic free convection through a porous medium. Acta Mech 119:147–164

    Article  MATH  Google Scholar 

  • Ezzat MA, El-Bary AA, El-Karamany AS (2009a) Two-temperature theory in generalized magneto-thermo-viscoelasticity. Can J Phys 87:329–336

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS, El-Bary AA (2009b) State space approach to one-dimensional magneto-thermoelasticity under the Green–Naghdi theories. Can J Phys 87:867–878

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS, Fayik MA (2012) Fractional order theory in thermoelastic solid with three-phase lag heat transfer. Arch Appl Mech 82:557–572

    Article  MATH  Google Scholar 

  • Ezzat MA, Al-Sowayan NS, Al-Muhiameed ZI (2014) Fractional modelling of Pennes’ bioheat transfer equation. Heat Mass Transf 50:907–914

    Article  Google Scholar 

  • Ezzat MA, Al-Sowayan NS, El-Bary AA (2016) Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface. Anim Sci J 87:1304–1311

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS, El-Bary AA (2017) Application of fractional order theory of thermoelasticity to 3D time-dependent thermal shock problem for a half-space. Mech Adv Mater Struct 24:27–35

    Article  Google Scholar 

  • Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2:1–7

    Article  MATH  Google Scholar 

  • Green AE, Naghdi PM (1991) A re-examination of the basic postulates of Thermomechanics. Proc R Soc Lond A 432:171–194

    Article  MathSciNet  MATH  Google Scholar 

  • Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Therm Stress 15:253–264

    Article  MathSciNet  Google Scholar 

  • Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31:189–208

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME, Williams WQ (1966) On the Clausius-Duhem inequality. ZAMP 17:626–633

    Article  Google Scholar 

  • Hetnarski RB, Ignaczak J (1999) Generalized thermoelasticity. J Therm Stress 22:451–476

    Article  MathSciNet  MATH  Google Scholar 

  • Honig G, Hirdes U (1984) A method for the numerical inversion of the Laplace transform. J Comput Appl Math 10:113–132

    Article  MathSciNet  MATH  Google Scholar 

  • Horgan CO, Quintanilla R (2005) Spatial behaviour of solutions of the dual-phase-lag heat equation. Math Mech Appl Sci 28:43–57

    Article  MathSciNet  MATH  Google Scholar 

  • Ieşan D (1970) On the linear coupled thermoelasticity with two temperatures. ZAMP 21:583–591

    Article  MathSciNet  MATH  Google Scholar 

  • Ignaczak J, Ostoja-Starzewski M (2009) Thermoelasticity with finite wave speeds. Oxford University Press, New York

    Book  MATH  Google Scholar 

  • Jou D, Criado-Sancho M (1988) Thermodynamic stability and temperature overshooting in dual-phase-lag heat transfer. Phys Lett A 248:172–178

    Article  Google Scholar 

  • Kumar R, Sharma KD, Garg SK (2014) Effect of two temperatures on reflection coefficient in micropolar thermoelastic with and without energy dissipation media. Adv Acoust Vib 2014:1–11. doi:10.1155/2014/846721

  • Lord H, Shulman YA (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  MATH  Google Scholar 

  • Magaña A, Quintanilla R (2009) Uniqueness and growth of solutions in two-temperature generalized thermoelastic theories. Math Mech Solids 14:622–634

    Article  MathSciNet  MATH  Google Scholar 

  • Mukhopadhyay S, Kumar R (2008) A problem on thermoelastic interactions in an infinite medium with a cylindrical hole in generalized thermoelasticity III. J Therm Stress 31:455–475

    Article  Google Scholar 

  • Peshkov V (1944) Second sound in helium II. J Phys 8:381–382

    Google Scholar 

  • Puri P, Jordan PM (2006) On the propagation of harmonic plane waves under the two-temperature theory. Int J Eng Sci 44:1113–1126

    Article  MathSciNet  MATH  Google Scholar 

  • Roychoudhuri SK (2007) On a thermoelastic three-phase-lag model. J Therm Stress 30:231–238

    Article  Google Scholar 

  • Sharma N, Kumar R, Lata P (2015) Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation. Mater Phys Mech 22:107–117

    Google Scholar 

  • Sherief HH (1987) On uniqueness and stability in generalized thermoelasticity. Q Appl Math 45:773–778

    Article  MathSciNet  MATH  Google Scholar 

  • Tzou DY (1995) A unified filed approach for heat conduction from macro to macro Scales. ASME Heat Transf 117:8–16

    Article  Google Scholar 

  • Wojnar R (1985) Uniqueness of displacement-heat flux and stress-temperature problems in thermoelasticity with one relaxation time. J Therm Stress 8:351–364

    Article  MathSciNet  Google Scholar 

  • Youssef HM (2006) Theory of two-temperature generalized thermoelasticity. IMA J Appl Math 71:383–390

    Article  MathSciNet  MATH  Google Scholar 

  • Youssef HM, Elsibai KA (2015) On the theory of two-temperature thermoelasticity without energy dissipation of Green–Naghdi model. Appl Anal 94:1997–2010

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy A. Ezzat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzat, M.A., El-Karamany, A.S. & El-Bary, A.A. Two-temperature theory in Green–Naghdi thermoelasticity with fractional phase-lag heat transfer. Microsyst Technol 24, 951–961 (2018). https://doi.org/10.1007/s00542-017-3425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3425-6

Navigation