Skip to main content
Log in

Green’s functions for infinite orthotropic, hygro-electro-magneto-thermoelastic materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The current study is attempted to explore the general solution for the plane problem of an orthotropic hygro-electro-magneto-thermoelastic material (HEMTM). A complete general solution is accomplished by the aid of operator theory and superposition principle, which satisfies twelfth order partial differential equation. Moreover, the obtained general solution is simplified in terms of six harmonic functions and is helpful for boundary value problem of HEMTM. As an application, the fundamental solution for a steady point moisture source combined with heat source in an infinite HEMTM is derived using the general solution. Consequently, exact and complete solutions in terms of elementary functions are obtained, which can serve as a benchmark for various kinds of numerical codes and approximate solutions. Along with this, numerical simulations are conducted using the general solution and graphically illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\({u_{i}}\) :

Elastic displacements (m)

\(\Phi \) :

Electric potential (N m/C)

\(\psi \) :

Magnetic potential (I)

\(\theta \) :

Changes of temperature (K)

m :

Moisture concentration (kg/m\(^3\))

\(D_{i}\) :

Electric displacements (C/m\(^2\))

\(g_{ij}\) :

Magneto-electric coefficients (Ns/VC)

\(p_{3}\) :

Pyroelectric coefficients (C/m\(^2\)K)

\(\chi _{3}\) :

Hygroelectric coefficients (Cm/kg)

\(c_{ij}\) :

Elastic coefficients (N/m\(^2\))

\(q_{i}\) :

Moisture flux (kg/m\(^2\))

\(h_{i}\) :

Heat flux (W/m\(^2\))

\(\sigma _{ij}\) :

Component of stresses (N/m\(^2\))

\(e_{ij}\) :

Piezoelectric coefficients (C/m\(^2\))

\(d_{ij}\) :

Piezomagnetic coefficients (N/Am)

\(\alpha _{i}\) :

Thermal expansion coefficients (1/K)

\(\beta _{i}\) :

Moisture expansion coefficients (m\(^3\)/kg)

\(\uplambda _{ij}\) :

Conduction coefficients of heat (W/Km)

\(B_{i}\) :

Magnetic induction (M/IT\(^2\))

\(m_{3}\) :

Pyromagnetic coefficients (C/m\(^2\) K)

\(\nu _{3}\) :

Hygromagnetic coefficients (N m\(^2\)/A kg)

\(\mu _{ij}\) :

Magnetic constants (Ns\(^2\)/C\(^2\))

\(\epsilon _{ij}\) :

Dielectric constant (C\(^2\)/N m\(^2\))

\(k_{ij}\) :

Conduction coefficients of moisture (kg/m\(^2\) s Pa)

References

  1. Loewy, R.G.: Recent developments in smart structures with aeronautical applications. Smart Mater. Struct. 6(5), 11–42 (1997). https://doi.org/10.1088/0964-1726/6/5/001

    Article  Google Scholar 

  2. Altay, G., Dokmeci, M.C.: Certain hygrothermopiezoelectric multi-field variational principles for smart elastic laminae. Mech. Adv. Mater. Struct. 15(1), 21–32 (2008). https://doi.org/10.1080/15376490701410562

    Article  Google Scholar 

  3. Wang, Y., Xu, R., Ding, H., Chen, J.: Three-dimensional exact solutions for free vibrations of simply supported magneto-electro-elastic cylindrical panels. Int. J. Eng. Sci. 48(12), 1778–1796 (2010). https://doi.org/10.1016/j.ijengsci.2010.09.022

    Article  MATH  Google Scholar 

  4. Xin, L., Hu, Z.: Free vibration of simply supported and multilayered magneto-electroelastic plates. Compos. Struct. 121, 344–350 (2015). https://doi.org/10.1016/j.compstruct.2014.11.030

    Article  Google Scholar 

  5. Zhou, L., Nie, B., Ren, S., Żur, K.K., Kim, J.: On the hygro-thermo-electro-mechanical coupling effect on static and dynamic responses of piezoelectric beams. Compos. Struct. 259(1), 113248 (2021). https://doi.org/10.1016/j.compstruct.2020.113248

    Article  Google Scholar 

  6. Hartranft, R.J., Sih, G.C., Chen, T.S.: Interaction of temperature and moisture in diffusion. Lehigh University Institute of Fracture and Solid Mechanics, Report IFSM, pp. 77–82 (1977)

  7. Hartranft, R.J., Sih, G.C.: The influence of the Soret and Dufour effects on the diffusion of heat and moisture in solids. Int. J. Eng. Sci. 18(12), 1375–1383 (1980). https://doi.org/10.1016/0020-7225(80)90094-4

    Article  MATH  Google Scholar 

  8. King, G., Cassie, A.B.D.: Propagation of temperature changes through textiles in humid atmospheres. Part I—rate of absorption of water vapor by wool fibres. Trans. Faraday Soc. 35, 445–465 (1940). https://doi.org/10.1039/TF9403500445

    Article  Google Scholar 

  9. Pan, E.: Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech. 68(4), 608–618 (2001). https://doi.org/10.1115/1.1380385

    Article  MATH  Google Scholar 

  10. Akbarzadeh, A.H., Chen, Z.T.: Hygrothermal stresses in one dimensional functionally graded piezoelectricmedia in constant magnetic field. Compos. Struct. 97, 317–331 (2013). https://doi.org/10.1016/j.compstruct.2012.09.058

    Article  Google Scholar 

  11. Chen, W.Q., Ding, H.J., Ling, D.S.: Thermoelastic field of a transversely isotropic elastic medium containing a penny shaped crack exact fundamental solution. Int. J. Solids Struct. 41(1), 69–83 (2004). https://doi.org/10.1016/j.ijsolstr.2003.08.020

    Article  MATH  Google Scholar 

  12. Singh, M.C., Chakraborty, N.: Reflection of a plane magneto-thermoelastic wave at the boundary of a solid half-space in presence of initial stress. Appl. Math. Model. 39(5–6), 1409–1421 (2015). https://doi.org/10.1016/j.apm.2014.09.013

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen, H.S., Yang, D.Q.: Nonlinear vibration of functionally graded fiber-reinforced composite laminated cylindrical shells in hygrothermal environments. Appl. Math. Model. 39(5–6), 1480–1499 (2015). https://doi.org/10.1016/j.apm.2014.09.010

    Article  MathSciNet  MATH  Google Scholar 

  14. Ramirez, F., Heyliger, P.R., Pan, E.: Free vibration response of two-dimensional magneto-electro-elastic laminated plates. J. Sound Vib. 292(3–5), 626–644 (2006). https://doi.org/10.1016/j.jsv.2005.08.004

    Article  Google Scholar 

  15. Chen, J., Chen, H., Pan, E., Heyliger, P.R.: Modal analysis of magneto-electro-elastic plates using the state-vector approach. J. Sound Vib. 304(3–5), 722–734 (2007). https://doi.org/10.1016/j.jsv.2007.03.021

    Article  Google Scholar 

  16. Vinyas, M., Kattimani, S.C.: Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis. Compos. Struct. 180, 617–637 (2017). https://doi.org/10.1016/j.compstruct.2017.08.015

    Article  Google Scholar 

  17. Milazzo, A.: Refined equivalent single layer formulations and finite elements for smart laminates free vibrations. Compos. Part B Eng. 61, 238–253 (2014). https://doi.org/10.1016/j.compositesb.2014.01.055

    Article  Google Scholar 

  18. Tsai, Y.H., Wu, C.P.: Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. Int. J. Eng. Sci. 46(9), 843–857 (2008). https://doi.org/10.1016/j.ijengsci.2008.03.005

    Article  MATH  Google Scholar 

  19. Wang, X., Dong, K., Wang, X.Y.: Hygrothermal effect on dynamic inter laminar stresses in laminated plates with piezoelectric actuators. Compos. Struct. 71, 220–228 (2005). https://doi.org/10.1016/j.compstruct.2004.10.004

    Article  Google Scholar 

  20. Mahi, A., Bedia, E.A.A., Tounsi, A.: A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl. Math. Model. 39(9), 2489–2508 (2014). https://doi.org/10.1016/j.apm.2014.10.045

    Article  MathSciNet  MATH  Google Scholar 

  21. Farajpour, A., Krzysztof, K.Ż, Jinseok, K., Junuthula, N.R.: Nonlinear frequency behaviour of magneto-electromechanical mass nanosensors using vibrating MEE nanoplates with multiple nanoparticles. Compos. Struct. 260, 113458 (2021). https://doi.org/10.1016/j.compstruct.2020.113458

    Article  Google Scholar 

  22. Jankowski, P., Żur, K.K., Kim, J., Lim, C.W., Reddy, J.N.: On the piezoelectric effect on stability of symmetric FGM porous nanobeams. Compos. Struct. 267, 113880 (2021). https://doi.org/10.1016/j.compstruct.2021.113880

    Article  Google Scholar 

  23. Ghobadi, A., Golestanian, H., Beni, Y.T., Żur, K.K.: On the size-dependent nonlinear thermo-electro-mechanical free vibration analysis of functionally graded flexoelectric nano-plate. Commun. Nonlinear Sci. Numer. Simul. 95, 105585 (2021). https://doi.org/10.1016/j.cnsns.2020.105585

    Article  MathSciNet  MATH  Google Scholar 

  24. Ghobadi, A., Beni, Y.T., Żur, K.K.: Porosity distribution effect on stress, electric field and nonlinear vibration of functionally graded nanostructures with direct and inverse flexoelectric phenomenon. Compos. Struct. 259, 113220 (2021). https://doi.org/10.1016/j.compstruct.2020.113220

    Article  Google Scholar 

  25. Zhou, L., Li, X., Li, M., Żur, K.K.: The smoothed finite element method for time-dependent mechanical responses of MEE materials and structures around Curie temperature. Comput. Methods Appl. Mech. Eng. 370, 113241 (2020). https://doi.org/10.1016/j.cma.2020.113241

    Article  MathSciNet  MATH  Google Scholar 

  26. Żur, K.K., Arefi, M., Kim, J., Reddy, J.N.: Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Compos. B Eng. 182, 107601 (2020). https://doi.org/10.1016/j.compositesb.2019.107601

    Article  Google Scholar 

  27. Wang, W.H., Li, L., Lan, M., Ma, Z.C.: Surface wave speed of functionally gradient piezoelectric semiconductors. Arch. Appl. Mech. 92(6), 1905–12 (2022)

    Article  Google Scholar 

  28. Ellali, M., Bouazza, M., Amara, K.: Thermal buckling of a sandwich beam attached with piezoelectric layers via the shear deformation theory. Arch. Appl. Mech. 92(3), 657–65 (2022). https://doi.org/10.1007/s00419-021-02094-x

    Article  Google Scholar 

  29. Thai, L.M., Luat, D.T., Phung, V.B., Minh, P.V., Thom, D.V.: Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects. Arch. Appl. Mech. 92(1), 163–182 (2022). https://doi.org/10.1007/s00419-021-02048-3

    Article  Google Scholar 

  30. Pan, E.: Three-dimensional greens functions in anisotropic magneto-electro-elastic bimaterials. Z. Angew. Math. Phys. 53, 815–838 (2002). https://doi.org/10.1007/s00033-002-8184-1

    Article  MathSciNet  MATH  Google Scholar 

  31. Gao, C.F., Fan, W.X.: Green’s functions for the plane problem in a half-infinite piezoelectric medium. Mech. Res. Commun. 25(1), 69–74 (1998). https://doi.org/10.1016/S0093-6413(98)00008-1

    Article  MATH  Google Scholar 

  32. Wang, X., Shen, Y.: The general solution of three-dimensional problems in magnetoelectroelastic media. Int. J. Eng. Sci. 40(10), 1069–1080 (2002). https://doi.org/10.1016/S0020-7225(02)00006-X

    Article  MathSciNet  MATH  Google Scholar 

  33. Ding, H., Jiang, A., Hou, P., Chen, W.: Green’s functions for two-phase transversely isotropic magneto-electro-elastic media. Eng. Anal. Bound. Elem. 29(6), 551–561 (2005). https://doi.org/10.1016/j.enganabound.2004.12.010

    Article  MATH  Google Scholar 

  34. Kameswara Rao, N.S.V., Das, Y.C.: A mixed method in elasticity. J. Appl. Mech. 44(1), 51–56 (1977). https://doi.org/10.1115/1.3424013

    Article  MATH  Google Scholar 

  35. Jinxi, L., Xianglin, L., Yongbin, Z.: Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int. J. Eng. Sci. 39(12), 1405–1418 (2001). https://doi.org/10.1016/S0020-7225(01)00005-2

    Article  MATH  Google Scholar 

  36. Ding, H.J., Wang, G.Q., Chen, W.Q.: Greens functions for a two-phase infinite piezoelectric plane. Proc. R. Soc. Lond. A 453, 2241–2257 (1997). https://doi.org/10.1098/rspa.1997.0120

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Z., Gu, Y.: The method of fundamental solutions for general orthotropic elastic problems. Int. J. Appl. Exp. Math. 1, 109 (2016)

    Google Scholar 

  38. Wu, T.L., Huang, J.H.: Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases. Int. J. Solids Struct. 37(21), 2981–3009 (2000). https://doi.org/10.1016/S0020-7683(99)00116-X

    Article  MATH  Google Scholar 

  39. Zhao, M., Dang, H., Fan, C., Chen, Z.: Three-dimensional steady-state general solution for isotropic hygrothermoelastic media. J. Therm. Stress 41(8), 951–972 (2018). https://doi.org/10.1080/01495739.2018.1449040

    Article  Google Scholar 

  40. Haojiang, D., Chenbuo, L.: General solutions for coupled equations for piezoelectric media. Int. J. Solids Struct. 33(16), 2283–2298 (1996). https://doi.org/10.1016/0020-7683(95)00152-2

    Article  MATH  Google Scholar 

  41. Li, X., Ding, H., Chen, W.: Three-dimensional analytical solution for a transversely isotropic functionally graded piezoelectric circular plate subject to a uniform electric potential difference. Sci. China Ser. G Phys. Mech. Astron. 51(8), 1116–1125 (2008). https://doi.org/10.1007/s11433-008-0100-z

    Article  MATH  Google Scholar 

  42. Tariq, M.H., Younas, U., Dang, H., Ren, J.: A general solution for three dimensional steady-state transversely isotropic hygro-thermo-magneto-piezoelectric media. Appl. Math. Model. 80, 625–646 (2020). https://doi.org/10.1016/j.apm.2019.11.051

    Article  MathSciNet  MATH  Google Scholar 

  43. Żur, K.K.: Free vibration analysis of elastically supported functionally graded annular plates via quasi-Green’s function method. Compos. B Eng. 144, 37–55 (2018). https://doi.org/10.1016/j.compositesb.2018.02.019

    Article  Google Scholar 

  44. Zur, K.K.: Green’s function for frequency analysis of thin annular plates with nonlinear variable thickness. Appl. Math. Model. 40(5–6), 3601–3619 (2016). https://doi.org/10.1016/j.apm.2015.10.014

    Article  MathSciNet  MATH  Google Scholar 

  45. Żur, K.K.: Quasi-Green’s function approach to free vibration analysis of elastically supported functionally graded circular plates. Compos. Struct. 183, 600–610 (2018). https://doi.org/10.1016/j.compstruct.2017.07.012

    Article  Google Scholar 

  46. Żur, K.K.: Green’s function approach to frequency analysis of thin circular plates. Bull. Pol. Acad. Sci. 64(1), 181–188 (2016). https://doi.org/10.1515/bpasts-2016-0020

    Article  Google Scholar 

  47. Mohamed, Ali, J.S., Alsubari, S., Aminanda, Y.: Hygrothermoelastic analysis of orthotropic cylindrical shells. Latin Am. J. Solids Struct. 13(3), 573–589 (2016). https://doi.org/10.1590/1679-78252249

    Article  Google Scholar 

  48. Xiong, S.M., Hou, P.F., Yang, S.Y.: 2-D Green’s functions for semi-infinite orthotropic piezothermoelastic plane. IEEE. Trans. Ultrasonics Ferroelectr. Freq. Control 57(5), 1003–1010 (2010). https://doi.org/10.1109/TUFFC.2010.1512

    Article  Google Scholar 

  49. Wang, B.L., Mai, Y.W.: Crack tip field in piezoelectric/piezomagnetic media. Eur. J. Mech. A Solids 22(4), 591–602 (2003). https://doi.org/10.1016/S0997-7538(03)00062-7

    Article  MATH  Google Scholar 

  50. Ashida, F., Noda, N., Okumura, I.A.: General solution technique for transient thermoelasticity of transversely isotropic solids in cylindrical coordinates. Acta Mech. 101(1–4), 215–230 (1993). https://doi.org/10.1007/BF01175607

    Article  MathSciNet  MATH  Google Scholar 

  51. Almansi, E.: Sull integrazione dell equazione differenziale \(\Delta ^{2n}u = 0\). Ann. Mat. Pura Appl. 3, 1–51 (1899). https://doi.org/10.1007/BF02419286

    Article  Google Scholar 

  52. Pan, L., Hou, P., Chen, J.: 2D steady-state general solution and fundamental solution for fluid-saturated, orthotropic, poroelastic materials. Z. Angew. Math. Phys. 67(84), 1–13 (2016). https://doi.org/10.1007/s00033-016-0677-4

    Article  MathSciNet  MATH  Google Scholar 

  53. Hou, P.F., Yi, T., Wang, L.: 2D General solution and fundamental solution for othotropic electro-magneto-thermo-elastic materials. J. Therm. Stress 31, 807–822 (2008). https://doi.org/10.1080/01495730802194375

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No. 52071298) and ZhongYuan Science and Technology Innovation Leadership Program (No. 214200510010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingli Ren.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} t_{11}&=\left( c_{11}\frac{\partial ^2}{\partial x^2}+c_{44}\frac{\partial ^2}{\partial z^2}\right) ,~~~~t_{12}=(c_{13}+c_{44})\frac{\partial ^2}{\partial x\partial z},~~~t_{13}=(e_{31}+e_{15})\frac{\partial ^2}{\partial x\partial z},\\ t_{14}&=(d_{15}+d_{31})\frac{\partial ^2}{\partial x\partial z},~~~t_{15}=-\beta _{1}\frac{\partial }{\partial x},\,\,\,t_{16}=-\alpha _{1}\frac{\partial }{\partial x},\\ t_{21}&=(c_{13}+c_{44})\frac{\partial ^2}{\partial x\partial z},~~~t_{22}=c_{44}\frac{\partial ^2}{\partial x^2}+c_{33}\frac{\partial ^2}{\partial z^2},~~~t_{23}=e_{15}\frac{\partial ^2}{\partial x^2}+e_{33}\frac{\partial ^2}{\partial z^2},\\ t_{24}&=d_{15}\frac{\partial ^2}{\partial x^2}+d_{33}\frac{\partial ^2}{\partial z^2},~~~t_{25}=-\beta _{3}\frac{\partial }{\partial z},\,\,\,t_{26}=-\alpha _{3}\frac{\partial }{\partial z},\\ t_{31}&=(e_{15}+e_{31})\frac{\partial ^2}{\partial x\partial z},~~~~~t_{32}=e_{15}\frac{\partial ^2}{\partial x^2}+e_{33}\frac{\partial ^2}{\partial z^2},~~~~~t_{33}=-\left( \epsilon _{11}\frac{\partial ^2}{\partial x^2}+\epsilon _{33}\frac{\partial ^2}{\partial z^2}\right) ,\\ t_{34}&=-\left( g_{11}\frac{\partial ^2}{\partial x^2}+g_{33}\frac{\partial ^2}{\partial z^2}\right) ,~~~~~t_{35}=\chi _{3}\frac{\partial }{\partial z},\,\,\,t_{36}=p_{3}\frac{\partial }{\partial z},\\ t_{41}&=(d_{15}+d_{31})\frac{\partial ^2}{\partial x\partial z},~~~~t_{42}=d_{15}\frac{\partial ^2}{\partial x^2}+d_{33}\frac{\partial ^2}{\partial z^2},~~~~t_{43}=-\left( g_{11}\frac{\partial ^2}{\partial x^2}+g_{33}\frac{\partial ^2}{\partial z^2}\right) ,\\ t_{44}&=-\left( \mu _{11}\frac{\partial ^2}{\partial x^2}+\mu _{33}\frac{\partial ^2}{\partial z^2}\right) ,~~~t_{45}=\nu _{3}\frac{\partial }{\partial z},\,\,\,t_{46}=m_{3}\frac{\partial }{\partial z},\\ t_{51}&=0,~~t_{52}=0,~~t_{53}=0,~~t_{54}=0,\,\,\,t_{55}=k_{11}\frac{\partial ^2}{\partial x^2}+k_{33}\frac{\partial ^2}{\partial z^2} ,~~t_{56}=0,\\ t_{61}&=0,~~t_{62}=0,~~t_{63}=0,~~t_{64}=0,~~t_{65}=0 ,~~t_{66}=\uplambda _{11}\frac{\partial ^2}{\partial x^2}+\uplambda _{33}\frac{\partial ^2}{\partial z^2}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, M.H., Dang, H. & Ren, J. Green’s functions for infinite orthotropic, hygro-electro-magneto-thermoelastic materials. Arch Appl Mech 92, 3325–3342 (2022). https://doi.org/10.1007/s00419-022-02239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02239-6

Keywords

Navigation