Skip to main content
Log in

A new bending model for composite laminated shells based on the refined zigzag theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a new bending model for composite laminated shells is proposed based on the refined zigzag theory. This new model is superior to the previous shell models based on the first-order shear deformation theory (FSDT) by introducing in-plane linear zigzag functions along the thickness direction, such that the shear correction coefficients can be omitted. In the present formulation, the bending equilibrium equations and boundary conditions of composite laminated shells are established by the virtual work principle. Without losing generality, Navier series solutions are used to describe the static properties of the composite laminated shells. In order to evaluate the effectiveness and performance of this new model, numerical examples are carried out to discuss the effect of the lamination schemes and geometric parameters on the static properties. In addition, the results are compared with the three-dimensional (3D) elastic theory and FSDT as well as the highly accurate theories in the literature to examine the accuracy. It is observed that the present model not only has the high accuracy of the high-order or other highly accurate models, but also has the intrinsic linear terms of the first-order models, such that it is very suitable for the future deducing finite element method to analyze the large-scale laminates with high computational efficiency. Therefore, the present new model can be a good candidate for engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pagano, N.J.: Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 4, 20–34 (1970)

    Article  Google Scholar 

  2. Ren, J.G.: Exact solutions for laminated cylindrical shells in cylindrical bending. Compos. Sci. Technol. 29, 169–187 (1987)

    Article  Google Scholar 

  3. Wu, C.P., Liu, C.C.: Mixed finite-element analysis of thick doubly curved laminated shells. J. Aerosp. Eng. 8, 43–53 (1995)

    Article  Google Scholar 

  4. Wu, C.P., Tarn, J.Q., Chi, S.M.: Three-dimensional analysis of doubly curved laminated shells. J. Eng. Mech. 122, 391–401 (1996)

    Google Scholar 

  5. Sheng, H.Y., Ye, J.Q.: A three-dimensional state space finite element solution for laminated composite cylindrical shells. Comput. Methods Appl. Mech. Eng. 192, 2441–2459 (2003)

    Article  MATH  Google Scholar 

  6. Monge, J.C., Mantari, J.L., Arciniega, R.A.: Computational semi-analytical method for the 3D elasticity bending solution of laminated composite and sandwich doubly-curved shells. Eng. Struct. 221, 110938 (2020)

    Article  Google Scholar 

  7. Guo, J.H., Chen, J.Y., Pan, E.: Analytical three-dimensional solutions of anisotropic multilayered composite plates with modified couple-stress effect. Compos. Struct. 153, 321–331 (2016)

    Article  Google Scholar 

  8. Sun, T.Y., Guo, J.H., Zhang, X.Y.: Static deformation of a multilayered one-dimensional hexagonal quasicrystal plate with piezoelectric effect. Appl. Math. Mech. Engl. Ed. 39, 335–352 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo, J.H., Chen, J.Y., Pan, E.: A three-dimensional size-dependent layered model for simply-supported and functionally graded magnetoelectroelastic plates. Acta Mech. Solida Sin. 31, 652–671 (2018)

    Article  Google Scholar 

  10. Kraus, H., Kalnins, A.: transient vibration of thin elastic shells. J. Acoust. Soc. Am. 38, 994–1002 (1965)

    Article  MathSciNet  Google Scholar 

  11. Donnell, L.H.: Stability of thin-walled tubes under torsion. In: Naca Tr. (1935)

  12. Flügge, W.: Stresses in Shells: Stresses in Shells, (1960)

  13. Zhang, G.Y., Gao, X.L., Littlefield, A.G.: A non-classical model for circular cylindrical thin shells incorporating microstructure and surface energy effects. Acta Mech. 232, 2225–2248 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sanders, J.L.: An Improved First-Approximation Theory for Thin Shells. In: Nasa Rep, (1959)

  15. Budiansky, B., Sanders, J.: On the “best” first-Order linear shell theory. Progress in Applied Mechanics, New York (1963)

    Google Scholar 

  16. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 23, 1–4 (1945)

    MathSciNet  MATH  Google Scholar 

  17. Whitney, J.M., Pagano, N.J.: Shear deformation in heterogeneous anisotropic plates. J. Appl. Mech. 37, 1031–1036 (1970)

    Article  MATH  Google Scholar 

  18. Zhang, G.Y., Gao, X.L.: A non-classical model for first-order shear deformation circular cylindrical thin shells incorporating microstructure and surface energy effects. Math. Mech. Solids 26, 1294–1319 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hildebrand, F.B., Reissner, E., Thomas, G.B.: Notes on the foundations of the theory of small displacements of orthotropic shells. J. Int. Polit. Theory 37, 1107–1116 (1949)

    Google Scholar 

  20. Whitney, J.M., Sun, C.T.: A refined theory for laminated anisotropic cylindrical shells. J. Hefei Univ. Technol. 41, 383–396 (1987)

    Google Scholar 

  21. Reddy, J.N.: A Higher-Order Theory for Geometrically Nonlinear Analysis of Composite Laminates. In: Nasa Contractor Reports, (1987)

  22. Love, A.E.H.: The small free vibrations and deformation of a thin elastic shell. Proc. R. Soc. Lond. 43, 352–353 (1887)

    Google Scholar 

  23. Yamaki, N. Simitses, G.J.: Elastic Stability of Circular Cylindrical Shells. North-Holland, (1984)

  24. Iurlaro, L., Gherlone, M., Sciuva, M.D., Tessler, A.: Assessment of the refined zigzag theory for bending, vibration, and buckling of sandwich plates: a comparative study of different theories. Compos. Struct. 106, 777–792 (2013)

    Article  Google Scholar 

  25. Matsunaga, H.: Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory. Compos. Struct. 48, 231–244 (2000)

    Article  Google Scholar 

  26. Matsunaga, H.: Vibration and stability of angle-ply laminated composite plates subjected to in-plane stresses. Int. J. Mech. Sci. 43, 1925–1944 (2001)

    Article  MATH  Google Scholar 

  27. Matsunaga, H.: Assessment of a global higher-order deformation theory for laminated composite and sandwich plates. Compos. Struct. 56, 279–291 (2002)

    Article  Google Scholar 

  28. Matsunaga, H.: Vibration and stability of cross-ply laminated composite shallow shells subjected to in-plane stresses. Compos. Struct. 78, 377–391 (2007)

    Article  Google Scholar 

  29. Matsunaga, H.: Vibration and buckling of cross-ply laminated composite circular cylindrical shells according to a global higher-order theory. Int. J. Mech. Sci. 49, 1060–1075 (2007)

    Article  Google Scholar 

  30. Lu, X., Liu, D.: An interlaminar shear stress continuity theory for both thin and thick composite laminates. J. Appl. Mech. 59, 502–509 (1992)

    Article  MATH  Google Scholar 

  31. Sciuva, M.D.: A refined transverse shear deformation theory for multilayered anisotropic plates. Atti Accad. Sci. Torino 118, 279–295 (1984)

    MATH  Google Scholar 

  32. Sciuva, M.D.: Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model. J. Sound Vib. 105, 425–442 (1986)

    Article  Google Scholar 

  33. Sciuva, M.D.: Multilayered anisotropic plate models with continuous interlaminar stresses. Compos. Struct. 22, 149–167 (1992)

    Article  Google Scholar 

  34. Sciuva, M.D.: A general quadrilateral multilayered plate element with continuous interlaminar stresses. Comput. Struct. 47, 91–105 (1993)

    Article  MATH  Google Scholar 

  35. Sciuva, M.D.: Development of an anisotropic, multilayered, shear-deformable rectangular plate element. Comput. Struct. 21, 789–796 (1985)

    Article  MATH  Google Scholar 

  36. Sciuva, M.D.: An improved shear-deformation theory for moderately thick multilayered anisotropic shells and plates. J. Appl. Mech. 54, 589–596 (1987)

    Article  MATH  Google Scholar 

  37. Cho, M.: Efficient higher order composite plate theory for general lamination configurations. AIAA J. 31, 1299–1306 (1993)

    Article  MATH  Google Scholar 

  38. Averill, R.C.: Static and dynamic response of moderately thick laminated beams with damage. Compos. Eng. 4, 381–395 (1994)

    Article  Google Scholar 

  39. Averill, R.C., Yip, Y.C.: Development of simple, robust finite elements based on refined theories for thick laminated beams. Comput. Struct. 59, 529–546 (1996)

    Article  MATH  Google Scholar 

  40. Icardi, U.: A three-dimensional zig-zag theory for analysis of thick laminated beams. Compos. Struct. 52, 123–135 (2001)

    Article  Google Scholar 

  41. Icardi, U., Sola, F.: Development of an efficient zigzag model with variable representation of displacements across the thickness. J. Eng. Mech. 140, 531–541 (2014)

    Google Scholar 

  42. Tessler, A., Sciuva, M.D., Gherlone, M.: A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics. J. Mech. Mater. Struct. 5, 341–367 (2010)

    Article  Google Scholar 

  43. Tessler, A., Sciuva, M.D., Gherlone, M.: A refined zigzag beam theory for composite and sandwich beams. J. Compos. Mater. 43, 1051–1081 (2009)

    Article  Google Scholar 

  44. Sciuva, M.D., Gherlone, M., Tessler, A.: A robust and consistent first-order zigzag theory for multilayered beams. Solid Mech. Appl. 168, 255–268 (2009)

    MathSciNet  Google Scholar 

  45. Sciuva, M.D., Gherlone, M., Iurlaro, L., Tessler, A.: A class of higher-order C0 composite and sandwich beam elements based on the refined zigzag theory. Compos. Struct. 132, 784–803 (2015)

    Article  Google Scholar 

  46. Tessler, A.: Refined zigzag theory for homogeneous, laminated composite, and sandwich beams derived from Reissner’s mixed variational principle. Meccanica (Milan) 50, 2621–2648 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Barut, A., Madenci, E., Tessler, A.: C0-continuous triangular plate element for laminated composite and sandwich plates using the {2,2}-Refined Zigzag Theory. Compos. Struct. 106, 835–853 (2013)

    Article  Google Scholar 

  48. Tessler, A., Sciuva, M.D., Gherlone, M.: A homogeneous limit methodology and refinements of computationally efficient zigzag theory for homogeneous, laminated composite, and sandwich plates. Numer. Methods Partial Differ. Equ. 27, 208–229 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Iurlaro, L., Gherlone, M., Sciuva, M.D., Tessler, A.: Refined Zigzag Theory for laminated composite and sandwich plates derived from Reissner’s mixed variational theorem. Compos. Struct. 133, 809–817 (2015)

    Article  Google Scholar 

  50. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press (2004)

  51. Mantari, J.L., Oktem, A.S., Soares, C.G.: Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory. Compos. Struct. 94, 37–49 (2012)

    Article  Google Scholar 

  52. Reddy, J.N., Liu, C.F.: A higher-order shear deformation theory of laminated elastic shells. Int. J. Eng. Sci. 23, 319–330 (1985)

    Article  MATH  Google Scholar 

  53. Karama, M., Afaq, K.S., Mistou, S.: A new theory for laminated composite plates: proceedings of the institution of mechanical engineers part L. J. Mater. Des. Appl. 223, 53–62 (2009)

    Google Scholar 

  54. Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29, 901–916 (1991)

    Article  MATH  Google Scholar 

  55. Khdeir, A.A., Reddy, J.N., Frederick, D.: A study of bending, vibration and buckling of cross-ply circular cylindrical shells with various shell theories. Int. J. Eng. Sci. 27, 1337–1351 (1989)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanli Yang or Dan He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The refined zigzag functions are defined by piecewise linear functions [42]

$$\begin{gathered} \phi_{{1}}^{k)} = \frac{1}{2}(1 - \xi^{(k)} )u_{(k - 1)} + \frac{1}{2}(1 + \xi^{(k)} )u_{(k)} \hfill \\ \phi_{{2}}^{k)} = \frac{1}{2}(1 - \zeta^{(k)} v_{(k - 1)} + \frac{1}{2}(1 + \xi^{(k)} )v_{(k)} \hfill \\ \xi^{(k)} = \left[ {\frac{{z - z_{(k - 1)} }}{{h^{(k)} }} - 1} \right] \in \left[ { - 1,1} \right]{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (k = 1,2,....N). \hfill \\ \end{gathered}$$
(A1)

The first layer starts at \(z_{(0)} = - h\) and the last layer ends at \(z_{(N)} = h.\)\(z_{(k)} = z_{(k - 1)} + 2h^{(k)}\), where \(2h^{(k)}\) represents the thickness of the kth layer.

In addition, the integrals of the slope functions \(\beta_{\alpha }^{(k)} {(}\alpha { = 1,2)}\) through the thickness disappear according to RZT [42], which yields

$$\int_{{{ - }h}}^{h} {\left\{ \begin{gathered} \beta_{{1}}^{(k)} \hfill \\ \beta_{2}^{(k)} \hfill \\ \end{gathered} \right\}} {\text{d}}z = \left\{ \begin{gathered} \sum\limits_{k = 1}^{N} {2h^{(k)} \beta_{1}^{(k)} } \hfill \\ \sum\limits_{k = 1}^{N} {2h^{(k)} \beta_{2}^{(k)} } \hfill \\ \end{gathered} \right\} = \left\{ \begin{gathered} 0 \hfill \\ 0 \hfill \\ \end{gathered} \right\}.$$
(A2)

The average transverse shear strains can be expressed as [42]

$$\left\{ \begin{gathered} \gamma_{{1}} \hfill \\ \gamma_{{2}} \hfill \\ \end{gathered} \right\} = \frac{{1}}{{{2}h}}\int_{ - h}^{h} {\left\{ \begin{gathered} \gamma_{1z}^{(k)} \hfill \\ \gamma_{2z}^{(k)} \hfill \\ \end{gathered} \right\}{\text{d}}z} .$$
(A3)

Moreover, the transverse shear stresses can be expressed as

$$\begin{gathered} \left\{ \begin{gathered} \tau_{{{1}z}} \hfill \\ \tau_{2z} \hfill \\ \end{gathered} \right\}^{(k} = \left[ {\begin{array}{*{20}c} {Q_{11} } & {Q_{12} } \\ {Q_{21} } & {Q_{22} } \\ \end{array} } \right]^{(k)} \left\{ \begin{gathered} \eta_{1} \hfill \\ \eta_{2} \hfill \\ \end{gathered} \right\} + Q_{11}^{(k)} (1 + \beta_{1}^{(k)} )\left\{ \begin{gathered} 1 \hfill \\ Q_{12}^{(k)} /Q_{11}^{(k)} \hfill \\ \end{gathered} \right\}\psi_{1} + \hfill \\ Q_{22}^{(k)} (1 + \beta_{2}^{(k)} )\left\{ \begin{gathered} Q_{12}^{(k)} /Q_{22}^{(k)} \hfill \\ 1 \hfill \\ \end{gathered} \right\}\psi_{2} . \hfill \\ \end{gathered}$$
(A4)

It is noted that \(\eta_{\alpha } = \gamma_{\alpha } - \psi_{\alpha } {\kern 1pt} (\alpha = 1,{\kern 1pt} {\kern 1pt} 2).\) The above constraints give rise to the following expressions [42]:

$$\left\{ \begin{gathered} \beta_{{1}}^{k)} \hfill \\ \beta_{2}^{(k)} \hfill \\ \end{gathered} \right\} = \left\{ \begin{gathered} \frac{{G_{1} }}{{Q_{11}^{(k)} }} - 1 \hfill \\ \frac{{G_{2} }}{{Q_{22}^{(k)} }} - 1 \hfill \\ \end{gathered} \right\}$$
(A5)

where

$$\left\{ \begin{gathered} G_{1} \hfill \\ G_{2} \hfill \\ \end{gathered} \right\} = \left[ {\begin{array}{*{20}c} {(\frac{1}{2h}\int_{ - h}^{h} {\frac{{{\text{d}}z}}{{Q_{11}^{(k)} }})^{ - 1} } } \\ {(\frac{1}{2h}\int_{ - h}^{h} {\frac{{{\text{d}}z}}{{Q_{22}^{(k)} }})^{ - 1} } } \\ \end{array} } \right]$$
(A6)

in which \(G_{1}\) and \(G_{2}\) can be regarded as the weighted average transverse shear stiffness coefficient of the each layer.

Substituting (A6) into (A4) gives the transverse shear stresses [42]

$$\left\{ {\begin{array}{*{20}c} {\tau_{{{\text{1z}}}} } \\ {\tau_{2z} } \\ \end{array} } \right\}^{(k)} = \left[ {\begin{array}{*{20}c} {Q_{11} } & {Q_{12} } \\ {Q_{21} } & {Q_{22} } \\ \end{array} } \right]^{(k)} \left\{ {\begin{array}{*{20}c} {\gamma_{1} + \psi_{1} (\frac{{G_{1} }}{{Q_{11}^{(k)} }} - 1)} \\ {\gamma_{2} + \psi_{2} (\frac{{G_{2} }}{{Q_{22}^{(k)} }} - 1)} \\ \end{array} } \right\}.$$
(A7)

Bring (A5) into (A1) and get the zigzag functions [42]

$$\begin{gathered} \phi_{a}^{(1)} = (z + h)(\frac{{G_{a} }}{{Q_{aa}^{(1)} }} - 1){ (}k{ = 1),} \hfill \\ \phi_{a}^{(k)} = (z + h)(\frac{{G_{a} }}{{Q_{aa}^{(k)} }} - 1) + \sum\limits_{i = 2}^{k} {2h^{(i - 1)} } (\frac{{G_{a} }}{{Q_{aa}^{(i - 1)} }} - \frac{{G_{a} }}{{Q_{aa}^{(k)} }}){ (}k{ = 2,}...{,}{\kern 1pt} {\kern 1pt} N{),} \hfill \\ z \in [z_{(k - 1),} z_{(k)} ],{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} z_{(0)} = - h,z_{(k)} = z_{(k - 1)} + 2h^{(k)} { (}k{ = 1,}...{,}{\kern 1pt} {\kern 1pt} N{);}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {(}a{ = 1,}{\kern 1pt} {\kern 1pt} {\kern 1pt} {2)}{\text{.}} \hfill \\ \end{gathered}$$
(A8)

Appendix B

The constitutive equation in the kth layer of an orthotropic shell can be shown as

$${\varvec{\sigma}}^{(k)} = T^{(k)T} M^{(k)} T^{(k)} {\varvec{\varepsilon}}^{(k)} ,T^{(k)} = \left( {\begin{array}{*{20}l} {m^{2} } \hfill & {n^{2} } \hfill & {mn} \hfill & {} \hfill & {} \hfill \\ {n^{2} } \hfill & {m^{2} } \hfill & { - mn} \hfill & {} \hfill & {} \hfill \\ { - mn} \hfill & {mn} \hfill & {m^{2} - n^{2} } \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & m \hfill & n \hfill \\ {} \hfill & {} \hfill & {} \hfill & { - n} \hfill & m \hfill \\ \end{array} } \right),$$
(B1)
$$M^{(k)} = \left( {\begin{array}{*{20}l} {c_{11}^{(k)} - \frac{{c_{13}^{(k)} c_{13}^{(k)} }}{{c_{33}^{k} }}} \hfill & {c_{12}^{(k)} - \frac{{c_{13}^{(k)} c_{23}^{(k)} }}{{c_{33}^{k} }}} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {c_{12}^{k} - \frac{{c_{13}^{(k)} c_{23}^{(k)} }}{{c_{33}^{(k)} }}} \hfill & {c_{22}^{(k)} - \frac{{c_{23}^{(k)} c_{23}^{(k)} }}{{c_{33}^{(k)} }}} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {c_{66}^{(k)} } \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {c_{44}^{(k)} } \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {c_{55}^{(k)} } \hfill \\ \end{array} } \right),$$
(B2)

where \({\varvec{T}}^{k}\) is the transform matrix and \({\varvec{M}}^{k}\) is the stiffness matrix in the local coordinate. In addition, \(m = \cos (\vartheta^{k} )\),\(n = \sin (\vartheta^{k} )\) and \(\vartheta^{k}\) is the angle of ply. Moreover, \(c_{11}^{(k)} = (1 - \nu_{23}^{(k)} \nu_{32}^{(k)} )/E_{2}^{(k)} E_{3}^{(k)} \Delta ,\) \(C_{22}^{(k)} = (1 - \nu_{13}^{(k)} \nu_{31}^{(k)} )/E_{1}^{(k)} E_{3}^{(k)} \Delta ,\)\(C_{12}^{(k)} = (\nu_{12}^{(k)} + \nu_{13}^{(k)} \nu_{32}^{(k)} )/E_{1}^{(k)} E_{3}^{(k)} \Delta ,\) \(C_{13}^{(k)} = (\nu_{31}^{(k)} + \nu_{21}^{(k)} \nu_{32}^{(k)} )/E_{2}^{(k)} E_{3}^{(k)} \Delta ,\)\(C_{23}^{(k)} = (\nu_{23}^{(k)} + \nu_{13}^{(k)} \nu_{21}^{(k)} )/E_{1}^{(k)} E_{3}^{(k)} \Delta ,\)\(C_{33}^{(k)} = (1 - \nu_{21}^{(k)} \nu_{12}^{(k)} )/E_{1}^{(k)} E_{2}^{(k)} \Delta ,\)\(C_{66}^{(k)} = G_{12}^{(k)} ,\)\(C_{44}^{(k)} = G_{13}^{(k)} ,\)\(C_{55}^{(k)} = G_{23}^{(k)} ,\)\(\nu_{21}^{(k)} { = }E_{2}^{(k)} \nu_{12}^{(k)} /E_{1}^{(k)} ,\)\(\nu_{31}^{(k)} { = }E_{3}^{(k)} \nu_{13}^{(k)} /E_{1}^{(k)} ,\)\(\nu_{32}^{(k)} { = }E_{3}^{(k)} \nu_{23}^{(k)} /E_{2}^{(k)}\) and \(\Delta = (1 - \nu_{12}^{(k)} \nu_{21}^{(k)} - \nu_{13}^{(k)} \nu_{31}^{(k)} - \nu_{23}^{(k)} \nu_{32}^{(k)} - \nu_{12}^{(k)} \nu_{23}^{(k)} \nu_{31}^{(k)} - \nu_{13}^{(k)} \nu_{21}^{(k)} \nu_{32}^{(k)} )/E_{1}^{(k)} E_{2}^{(k)} E_{3}^{(k)} .\)

\(E_{1}^{(k)}\),\(E_{2}^{(k)}\) and \(E_{3}^{(k)}\) are elastic modulus. \(G_{12}^{(k)}\),\(G_{13}^{(k)}\) and \(G_{23}^{(k)}\) are shear modulus. \(\nu_{12}^{(k)}\),\(\nu_{13}^{(k)}\) and \(\nu_{23}^{(k)}\) are Poisson ratios.

Appendix C

The components in (19) are listed as follows:

$$C = \left[ {\begin{array}{*{20}c} {C_{11} } & {C_{12} } & {C_{16} } \\ {C_{12} } & {C_{22} } & {C_{26} } \\ {C_{16} } & {C_{26} } & {C_{66} } \\ \end{array} } \right]^{(k)} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} B_{\varphi } = \left[ {\begin{array}{*{20}c} z & {\varphi_{1}^{(k)} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & z & {\varphi_{2}^{(k)} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & z & {\varphi_{1}^{(k)} } & {\varphi_{2}^{(k)} } \\ \end{array} } \right],$$
(C1)
$$Q = \left[ {\begin{array}{*{20}c} {Q_{{22}} } & {Q_{{12}} } \\ {Q_{{12}} } & {Q_{{11}} } \\ \end{array} } \right]^{{(k)}} ,\;B_{\beta } = \left[ {\begin{array}{*{20}c} 1 & {\beta _{2}^{{(k)}} } & 0 & 0 \\ 0 & 0 & 1 & {\beta _{1}^{{(k)}} } \\ \end{array} } \right],$$
(C2)
$$A = A_{3\times3} = \int_{ - h}^{h} {C{\text{d}}z} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} B = B_{3\times7} = \int_{ - h}^{h} {CB_{\phi } {\text{d}}z} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} D = D_{7\times7} = \int_{ - h}^{h} {B_{\phi }^{T} CB_{\phi } {\text{d}}z} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} G = \int_{ - h}^{h} {B_{\beta }^{T} } QB_{\beta } {\text{d}}z,$$
(C3)
$$e_{m}^{T} = \{ u_{,1} + \frac{w}{{R_{1} }},v_{,2} + \frac{w}{{R_{2} }},u_{,2} + v_{,1} \} ,$$
(C4)
$$e_{b}^{T} = \{ \theta_{1,1} ,\psi_{1,1} ,\theta_{2,2} ,\psi_{2,2} ,\theta_{1,2} + \theta_{2,1} ,\psi_{1,2} ,\psi_{2,1} \} ,$$
(C5)
$$e_{s}^{T} = \{ w_{,2} + \theta_{2} - \frac{v}{{R_{2} }},\psi_{2} ,w_{,1} + \theta_{1} - \frac{u}{{R_{1} }},\psi_{1} \} .$$
(C6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhang, H., Yang, W. et al. A new bending model for composite laminated shells based on the refined zigzag theory. Arch Appl Mech 92, 2899–2915 (2022). https://doi.org/10.1007/s00419-022-02210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02210-5

Keywords

Navigation