Skip to main content
Log in

Nonlinear transverse vibrations of a slightly curved beam with hinged–hinged boundaries subject to axial loads

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The investigation of curved structures has attracted more and more attention, and the mainstream research focuses on the characteristics of curved beams subject to transverse loads, while sometimes axial loads are inevitable in engineering practice. Hence, this work aims to investigate the nonlinear vibrations of a curved beam subject to axial loads by developing appropriate modeling and solving methods. In this work, a nonlinear dynamic model of a hinged–hinged slightly curved beam (SCB) with sinusoidal shape subject to axial loads is first established, and the modal hypothesis method is subsequently used to obtain natural frequencies and mode shapes of the SCB subject to axial loads. Thereafter, a procedure to calculate the forced vibration responses of the SCB subject to axial loads is proposed by successively using the Galerkin truncation method, harmonic balance method and pseudo arc-length method. Finally, case studies are carried out to validate the above modeling and solving methods of the SCB subject to axial loads and explore its nonlinear dynamic characteristics. On the one hand, the effectiveness and accuracy of the proposed modeling and solving methods are verified by comparing with the results of finite element analysis. On the other hand, the results of the case studies demonstrate that the initial curvature, axial force, external excitation amplitude and initial configuration of the SCB can significantly affect its nonlinear dynamic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arena, A., Pacitti, A., Lacarbonara, W.: Nonlinear response of elastic cables with flexural-torsional stiffness. Int. J. Solids Struct. 87, 267–277 (2016)

    Article  Google Scholar 

  2. Zhao, Y., Kang, H.: In-plane free vibration analysis of cable–arch structure. J. Sound Vib. 312, 363–379 (2008)

    Article  Google Scholar 

  3. Kang, H.J., Zhao, Y.Y., Zhu, H.P.: Out-of-plane free vibration analysis of a cable–arch structure. J. Sound Vib. 332, 907–921 (2013)

    Article  Google Scholar 

  4. Arena, A., Lacarbonara, W.: Nonlinear parametric modeling of suspension bridges under aeroelastic forces: torsional divergence and flutter. Nonlinear Dyn. 70, 2487–2510 (2012)

    Article  MathSciNet  Google Scholar 

  5. Li, J., Law, S.S., Hao, H.: Improved damage identification in bridge structures subject to moving loads: numerical and experimental studies. Int. J. Mech. Sci. 74, 99–111 (2013)

    Article  Google Scholar 

  6. Stojanović, V., Petković, M.D., Milić, D.: Nonlinear vibrations of a coupled beam-arch bridge system. J. Sound Vib. 464, 115000 (2020)

    Article  Google Scholar 

  7. Ding, H., Li, D.-P.: Static and dynamic behaviors of belt-drive dynamic systems with a one-way clutch. Nonlinear Dyn. 78, 1553–1575 (2014)

    Article  MathSciNet  Google Scholar 

  8. Mayoof, F.N., Hawwa, M.A.: Chaotic behavior of a curved carbon nanotube under harmonic excitation. Chaos Solitons Fractals 42, 1860–1867 (2009)

    Article  Google Scholar 

  9. Ding, H., Chen, L.-Q.: Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators. Nonlinear Dyn. 95, 2367–2382 (2019)

    Article  MATH  Google Scholar 

  10. Ye, S.Q., Mao, X.Y., Ding, H., Ji, J.C., Chen, L.Q.: Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions. Int. J. Mech. Sci. 168, 105294 (2020)

    Article  Google Scholar 

  11. Lee, Y.Y., Huang, J.L., Hui, C.K., Ng, C.F.: Sound absorption of a quadratic and cubic nonlinearly vibrating curved panel absorber. Appl. Math. Model. 36, 5574–5588 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Özkaya, E., Sarigul, M., Boyaci, H.: Nonlinear transverse vibrations of a slightly curved beam resting on multiple springs. Int. J. Acoustic Vibr. 21, 379–391 (2016)

    Google Scholar 

  13. Öz, H.R., Pakdemirli, M.: Two-to-one internal resonances in a shallow curved beam resting on an elastic foundation. Acta Mech. 185, 245–260 (2006)

    Article  MATH  Google Scholar 

  14. Öz, H.R., Pakdemirli, M., Özkaya, E., Yilmaz, M.: Non-linear vibrations of a slightly curved beam resting on a non-linear elastic foundation. J. Sound Vib. 212, 295–309 (1998)

    Article  Google Scholar 

  15. Nayfeh, A.H., Emam, S.A.: Exact solution and stability of postbuckling configurations of beams. Nonlinear Dyn. 54, 395–408 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tseng, W.Y., Dugundji, J.: Nonlinear vibrations of a buckled beam under harmonic excitation. J. Appl. Mech. 38, 467–476 (1971)

    Article  MATH  Google Scholar 

  17. Rehfield, L.W.: Nonlinear free vibrations of elastic structures. Int. J. Solids Struct. 9, 581–590 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rehfield, L.W.: Nonlinear flexural oscillations of shallow arches. AIAA J. 12, 91–93 (1974)

    Article  MATH  Google Scholar 

  19. Tseng, W.Y., Dugundji, J.: Nonlinear vibrations of a beam under harmonic excitation. J. Appl. Mech. 37, 292–297 (1970)

    Article  MATH  Google Scholar 

  20. Chen, L.W., Shen, G.S.: Vibration and buckling of initially stressed curved beams. J. Sound Vib. 215, 511–526 (1998)

    Article  MATH  Google Scholar 

  21. Poon, W.Y., Ng, C.F., Lee, Y.Y.: Dynamic stability of a curved beam under sinusoidal loading. J. Aerosp. Eng. 216, 209–217 (2002)

    Google Scholar 

  22. Lee, Y.Y., Poon, W.Y., Ng, C.F.: Anti-symmetric mode vibration of a curved beam subject to autoparametric excitation. J. Sound Vib. 290, 48–64 (2006)

    Article  Google Scholar 

  23. Huang, J.L., Su, R.K.L., Lee, Y.Y., Chen, S.H.: Nonlinear vibration of a curved beam under uniform base harmonic excitation with quadratic and cubic nonlinearities. J. Sound Vib. 330, 5151–5164 (2011)

    Article  Google Scholar 

  24. Lee, Y.Y., Su, R.K.L., Ng, C.F., Hui, C.K.: The effect of modal energy transfer on the sound radiation and vibration of a curved panel: theory and experiment. J. Sound Vib. 324, 1003–1015 (2009)

    Article  Google Scholar 

  25. Nie, R., Li, T., Zhu, X., Zhou, H.: A general Fourier formulation for in-plane and out-of-plane vibration analysis of curved beams. Shock. Vib. 2021, 1–14 (2021)

    Article  Google Scholar 

  26. Özkaya, E., Sarigül, M., Boyaci, H.: Nonlinear transverse vibrations of a slightly curved beam carrying a concentrated mass. Acta Mech. Sin. 25, 871 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Y.D., Yang, Y.R.: Nonlinear vibration of slightly curved pipe with conveying pulsating fluid. Nonlinear Dyn. 88, 2513–2529 (2017)

    Article  Google Scholar 

  28. Andrzej, C., Jan, Ł: Non-planar vibrations of slightly curved pipes conveying fluid in simple and combination parametric resonances. J. Sound Vib. 413, 270–290 (2018)

    Article  Google Scholar 

  29. Owoseni, O.D., Orolu, K.O., Oyediran, A.A.: Dynamics of slightly curved pipe conveying hot pressurized fluid resting on linear and nonlinear viscoelastic foundations. J. Vib. Acoust. 140, 021005 (2017)

    Article  Google Scholar 

  30. Oyelade, A.O., Oyediran, A.A.: The effect of various boundary conditions on the nonlinear dynamics of slightly curved pipes under thermal loading. Appl. Math. Model. 87, 332–350 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ye, S.Q., Ding, H., Wei, S., Ji, J.C., Chen, L.Q.: Non-trivial equilibriums and natural frequencies of a slightly curved pipe conveying supercritical fluid. Ocean Eng. 227, 108899 (2021)

    Article  Google Scholar 

  32. Zhou, K., Ni, Q., Chen, W., Dai, H.L., Hagedorn, P., Wang, L.: Static equilibrium configuration and nonlinear dynamics of slightly curved cantilevered pipe conveying fluid. J. Sound Vib. 490, 115711 (2021)

    Article  Google Scholar 

  33. Tomasiello, S.: A DQ based approach to simulate the vibrations of buckled beams. Nonlinear Dyn. 50, 37–48 (2007)

    Article  MATH  Google Scholar 

  34. Susanto, K.: Vibration analysis of piezoelectric laminated slightly curved beams using distributed transfer function method. Int. J. Solids Struct. 46, 1564–1573 (2009)

    Article  MATH  Google Scholar 

  35. Chen, H.-Y., Mao, X.-Y., Ding, H., Chen, L.-Q.: Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks. Mech. Syst. Signal Process. 135, 106383 (2020)

    Article  Google Scholar 

  36. Luo, A.C.J., Baghaei Lakeh, A.: An approximate solution for period-1 motions in a periodically forced Van Der Pol oscillator. J. Comput. Nonlinear Dyn. 9, 031001 (2014)

    Article  Google Scholar 

  37. Roncen, T., Sinou, J.J., Lambelin, J.P.: Non-linear vibrations of a beam with non-ideal boundary conditions and uncertainties—modeling, numerical simulations and experiments. Mech. Syst. Signal Process. 110, 165–179 (2018)

    Article  MATH  Google Scholar 

  38. Guillot, L., Lazarus, A., Thomas, O., Vergez, C., Cochelin, B.: A purely frequency based Floquet-Hill formulation for the efficient stability computation of periodic solutions of ordinary differential systems. J. Comput. Phys. 416, 109477 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Luo, A.C., Huang, J.: Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. J. Vib. Control 18, 1661–1674 (2012)

    Article  MathSciNet  Google Scholar 

  40. Peng, Z.K., Lang, Z.Q., Billings, S.A., Tomlinson, G.R.: Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. J. Sound Vib. 311, 56–73 (2008)

    Article  Google Scholar 

  41. Colaïtis, Y., Batailly, A.: The harmonic balance method with arc-length continuation in blade-tip/casing contact problems. J. Sound Vib. 502, 116070 (2021)

    Article  Google Scholar 

  42. Jokar, H., Vatankhah, R., Mahzoon, M.: Nonlinear vibration analysis of horizontal axis wind turbine blades using a modified pseudo arc-length continuation method. Eng. Struct. 247, 113103 (2021)

    Article  Google Scholar 

  43. Ding, H., Lu, Z.-Q., Chen, L.-Q.: Nonlinear isolation of transverse vibration of pre-pressure beams. J. Sound Vib. 442, 738–751 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11802201, 11972245), the Natural Science Foundation of Tianjin City (Grant No. 21JCQNJC00360), the Aeronautical Science Foundation of China (Grant No. 2020Z009048001), and the Young Elite Scientists Sponsorship Program by Tianjin (Grant No. TJSQNTJ-2020-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Sai Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, YJ., Ma, ZS., Ding, Q. et al. Nonlinear transverse vibrations of a slightly curved beam with hinged–hinged boundaries subject to axial loads. Arch Appl Mech 92, 2081–2094 (2022). https://doi.org/10.1007/s00419-022-02162-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02162-w

Keywords

Navigation