Skip to main content
Log in

Nonlinear parametric modeling of suspension bridges under aeroelastic forces: torsional divergence and flutter

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A fully nonlinear model of suspension bridges parameterized by one single space coordinate is proposed to describe overall three-dimensional motions. The nonlinear equations of motion are obtained via a direct total Lagrangian formulation and the kinematics, for the deck-girder and the suspension cables, feature the finite displacements of the associated base lines and the flexural and torsional rotations of the deck cross-sections assumed rigid in their own planes. The strain-displacement relationships for the generalized strain parameters, the elongations in the cables, the deck elongation, and the three curvatures, retain the full geometric nonlinearities. The proposed nonlinear model with its full extensional-flexural-torsional coupling is employed to study the torsional divergence caused by the static part of the wind-induced forces. Two suspension bridges are considered as case studies: the Runyang bridge (main span 1,490 m) and the Hu Men bridge (main span 888 m) in China. The evaluation of the onset of the static instability and the post-critical behavior takes into account the prestressed condition of the bridge subject to dead loads. The dynamic bifurcation that occurs at the onset of flutter is also studied accounting for the prestressed equilibrium state about which the equations of motion are obtained via an updated Lagrangian formulation. Such a bifurcation is investigated in the context of the parametric nonlinear model considering the model parameters of the Runyang Suspension Bridge together with its aeroelastic derivatives. The calculated critical wind speeds for the onset of the static and dynamic bifurcations are compared with the results obtained via linear analysis and the main differences are highlighted. Parametric sensitivity studies are carried out to assess the influence of the design parameters on the instabilities associated with the bridge aeroelastic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Irvine, H.M.: Cablestructures. MIT Press, Cambridge (1981)

    Google Scholar 

  2. Abdel-Ghaffar, A.M.: Free lateral vibrations of suspension bridges. J. Struct. Div. 104(3), 503–525 (1978)

    Google Scholar 

  3. Abdel-Ghaffar, A.M.: Free torsional vibrations of suspension bridges. J. Struct. Div. 105(4), 767–788 (1979)

    Google Scholar 

  4. Abdel-Ghaffar, A.M.: Vertical vibration analysis of suspension bridges. J. Struct. Div. 106(10), 2053–2075 (1980)

    Google Scholar 

  5. Abdel-Ghaffar, A.M.: Suspension bridge vibration: continuum formulation. J. Eng. Mech. Div. 108(6), 1215–1232 (1982)

    Google Scholar 

  6. Abdel-Ghaffar, A.M., Rubin, L.I.: Nonlinear free vibrations of suspension bridges: theory. J. Eng. Mech. 109, 313–329 (1983)

    Article  Google Scholar 

  7. Abdel-Ghaffar, A.M., Rubin, L.I.: Nonlinear free vibrations of suspension bridges: application. J. Eng. Mech. 109, 330–345 (1983)

    Article  Google Scholar 

  8. Abdel-Rohman, M., Nayfeh, A.H.: Passive control of nonlinear oscillations in bridges. J. Eng. Mech. 113, 1694–1708 (1987)

    Article  Google Scholar 

  9. Abdel-Rohman, M., Nayfeh, A.H.: Active control of nonlinear oscillations in bridges. J. Eng. Mech. 113, 335–349 (1987)

    Article  Google Scholar 

  10. Çevika, M., Pakdemirlib, M.: Non-linear vibrations of suspension bridges with external excitation. Int. J. Non-Linear Mech. 40, 901–923 (2005)

    Article  Google Scholar 

  11. Malík, J.: Nonlinear models of suspension bridges. J. Math. Anal. Appl. 321, 828–850 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Malík, J.: Generalized nonlinear models of suspension bridges. J. Math. Anal. Appl. 324, 1288–1296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boonyapinyo, V., Yamada, H., Miyata, T.: Wind-induced nonlinear lateral–torsional buckling of cable-stayed bridges. J. Struct. Eng. 120(2), 486–506 (1994)

    Article  Google Scholar 

  14. Zhang, X., Xiang, H., Sun, B.: Nonlinear aerostatic and aerodynamic analysis of long-span suspension bridges considering wind-structure interactions. J. Wind Eng. Ind. Aerodyn. 92, 431–439 (2002)

    Article  Google Scholar 

  15. Cheng, J., Jiang, J., Xiao, R.: Aerostatic stability analysis of suspension bridges under parametric uncertainty. Eng. Struct. 25, 1675–1684 (2003)

    Article  Google Scholar 

  16. Cheng, J., Jiang, J., Xiao, R., Xiang, H.: Series method for analyzing 3D nonlinear torsional divergence of suspension bridges. Comput. Struct. 81, 299–308 (2003)

    Article  Google Scholar 

  17. Boonyapinyo, V., Lauhatanon, Y., Lukkunaprasit, P.: Nonlinear aerostatic stability analysis of suspension bridges. Eng. Struct. 28, 793–803 (2006)

    Article  Google Scholar 

  18. Cheng, J., Xiao, R.C.: A simplified method for lateral response analysis of suspension bridges under wind loads. Commun. Numer. Methods Eng. 22, 861–874 (2006)

    Article  MATH  Google Scholar 

  19. Lacarbonara, W., Arena, A.: Aerostatic torsional divergence of suspension bridges via a fully nonlinear continuum formulation. In: Proc. of 10th National Congress of Wind Engineering IN-VENTO 2008, Cefalù, Italy, 8–11 Jun. (2008)

    Google Scholar 

  20. Lacarbonara, W., Arena, A.: 3-dimensional model of suspension bridges via a fully nonlinear continuum formulation. In: Proc. of GIMC 2008, XVII Convegno Italiano di Meccanica Computazionale, Alghero, 10–12 Sept. (2008)

    Google Scholar 

  21. Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. NACA REPORT No. 496 (1935)

  22. Salvatori, L., Borri, C.: Frequency- and time-domain methods for the numerical modeling of full-bridge aeroelasticity. Comput. Struct. 85, 675–687 (2007)

    Article  Google Scholar 

  23. Salvatori, L., Spinelli, P.: Effects of structural nonlinearity and along-span wind coherence on suspension bridge aerodynamics: some numerical simulation results. J. Wind Eng. Ind. Aerodyn. 94, 415–430 (2006)

    Article  Google Scholar 

  24. Scanlan, R.H., Tomko, J.J.: Airfoil and bridge deck flutter derivates. J. Eng. Mech. 97, 1717–1737 (1971)

    Google Scholar 

  25. Simiu, E., Scanlan, R.: H. Wind Effects on Structures—Fundamentals and Applications to Design, 3rd edn. Wiley-Interscience, New York (1996)

    Google Scholar 

  26. Scanlan, R.H.: Reexamination of sectional aerodynamic force functions for bridges. J. Wind Eng. Ind. Aerodyn. 89, 1257–1266 (2001)

    Article  Google Scholar 

  27. Agar, T.J.A.: Aerodynamic flutter analysis of suspension bridges by a modal technique. Eng. Struct. 11, 75–82 (1989)

    Article  Google Scholar 

  28. Namini, A.H.: Analytical modeling of flutter derivatives as finite elements. Comput. Struct. 41(5), 1055–1064 (1991)

    Article  MATH  Google Scholar 

  29. Namini, A.H.: Finite element-based flutter analysis of cable-suspended bridge. J. Struct. Eng. 118(6), 1509–1526 (1992)

    Article  Google Scholar 

  30. Hua, X.G., Chen, Z.Q.: Full-order and multimode flutter analysis using ANSYS. Finite Elem. Anal. Des. 44, 537–551 (2008)

    Article  Google Scholar 

  31. Mishra, S.S., Kumar, K., Krishna, P.: Multimode flutter of long-span cable-stayed bridge based on 18 experimental aeroelastic derivatives. J. Wind Eng. Ind. Aerodyn. 96, 83–102 (2008)

    Article  Google Scholar 

  32. Preidikman, S., Mook, D.T.: Numerical simulation of flutter of suspension bridges. Appl. Mech. Rev. 50, 174–179 (1997)

    Article  Google Scholar 

  33. Arena, A., Lacarbonara, W.: Static and aeroelastic limit states of Ponte della Musica via a fully nonlinear continuum model. In: Atti del 19mo Congresso dell’Associazione Italiana di Meccanica Teorica e Applicata, Ancona, 14–17 Sept. (2009)

    Google Scholar 

  34. Lacarbonara, W., Arena, A.: Flutter of an arch bridge via a fully nonlinear continuum formulation. J. Aerosp. Eng. 24(1), 112–123 (2011)

    Article  Google Scholar 

  35. Chen, S.R., Cai, C.S.: Evolution of long-span bridge response to wind-numerical simulation and discussion. Comput. Struct. 81, 2055–2066 (2003)

    Article  Google Scholar 

  36. Zhang, X., Sun, B.: Parametric study on the aerodynamic stability of a long-span suspension bridge. J. Wind Eng. Ind. Aerodyn. 92, 431–439 (2004)

    Article  Google Scholar 

  37. Zhang, X.: Influence of some factors on the aerodynamic behavior of long-span suspension bridges. J. Wind Eng. Ind. Aerodyn. 95, 149–164 (2007)

    Article  Google Scholar 

  38. Pfeil, M.S., Batista, R.C.: Aerodynamic stability analysis of cable-stayed bridges. J. Struct. Eng. 121, 1748–1788 (1995)

    Article  Google Scholar 

  39. Ding, Q., Chen, A., Xiang, H.: Coupled flutter analysis of long-span bridges by multimode and full-order approaches. J. Wind Eng. Ind. Aerodyn. 90, 1981–1993 (2002)

    Article  Google Scholar 

  40. Cheung, Y.K.: The finite strip method in the analysis of elastic plates with two opposite simply supported ends. Proc. Inst. Civ. Eng., Lond. 40, 1–7 (1968)

    Article  Google Scholar 

  41. Lau, D.T., Cheung, M.S., Cheng, S.H.: 3D flutter analysis of bridges by spline finite-strip method. J. Struct. Eng. 126, 1246–1254 (2000)

    Article  Google Scholar 

  42. Agar, T.J.A.: The analysis of aerodynamic flutter of suspension bridges. Comput. Struct. 30, 593–600 (1988)

    Article  Google Scholar 

  43. Chen, X., Matsumoto, M., Kareem, A.: Time domain flutter and buffeting response analysis of bridges. J. Eng. Mech. 126, 7–16 (2000)

    Article  Google Scholar 

  44. Petrini, F., Giuliano, F., Bontempi, F.: Comparison of time domain techniques for the evaluation of the response and the stability in long span suspension bridges. Comput. Struct. 85, 1032–1048 (2007)

    Article  Google Scholar 

  45. Singh, L., Jones, N.P., Scanlan, R.H., Lorendeaux, O.: Identification of lateral flutter derivatives of bridge decks. J. Wind Eng. Ind. Aerodyn. 60, 81–89 (1996)

    Article  Google Scholar 

  46. Sarkar, P.P., Caracoglia, L., Haan, F.L. Jr., Sato, H., Murakoshid, J.: Comparative and sensitivity study of flutter derivatives of selected bridge deck sections, part 1: analysis of inter-laboratory experimental data. Eng. Struct. 31, 158–169 (2009)

    Article  Google Scholar 

  47. Lacarbonara, W.: Nonlinear Structural Mechanics. Theory, Phenomena and Modeling. Springer, New York (2012)

    Google Scholar 

  48. Antman, S.: S. Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (2005)

    Google Scholar 

  49. COMSOL Multiphysics 3.5 COMSOL Multiphysics/User’s Guide Version 3.5, COMSOL AB (2008)

  50. Xiang, H.F.: Wind-Resistant Design Guidebook for Highway Bridges. China Communication Press, Beijing (1996) (in Chinese)

    MATH  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the Ministry of Education, University, and Scientific Research under a PRIN Grant awarded to WL. The authors also gratefully acknowledge The National Science Foundation (grant NSF-CMMI-1031036) for providing further partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Lacarbonara.

Appendix

Appendix

The nine components of the rotation matrix R o are given by

$$ \everymath{\displaystyle} \begin{array}{l} R_{11}^{\mathrm{o}}=\cos\phi_2^{\mathrm{o}} \cos \phi_3^{\mathrm{o}}, \\[5pt] R_{12}^{\mathrm{o}}=-\cos\phi_2^{\mathrm{o}} \sin \phi_3^{\mathrm{o}}, \\[5pt] R_{13}^{\mathrm{o}}=\sin \phi_2^{\mathrm{o}}, \\[5pt] R_{21}^{\mathrm{o}}=\sin \phi_1^{\mathrm{o}} \sin \phi_2^{\mathrm{o}} \cos \phi_3^{\mathrm{o}} +\cos \phi_1^{\mathrm{o}} \sin \phi_3^{\mathrm{o}}, \\[5pt] R_{22}^{\mathrm{o}}=\cos \phi_1^{\mathrm{o}} \cos \phi_3^{\mathrm{o}} - \sin \phi_1^{\mathrm{o}} \sin \phi_2^{\mathrm{o}} \sin \phi_3^{\mathrm{o}}, \\[5pt] R_{23}^{\mathrm{o}}=-\sin \phi_1^{\mathrm{o}} \cos \phi_2^{\mathrm{o}}, \\[5pt] R_{31}^{\mathrm{o}}=\sin \phi_1^{\mathrm{o}} \sin \phi_3^{\mathrm{o}} - \cos \phi_1^{\mathrm{o}} \sin \phi_2^{\mathrm{o}} \cos \phi_3^{\mathrm{o}}, \\[5pt] R_{32}^{\mathrm{o}}= \cos \phi_1^{\mathrm{o}} \sin \phi_2^{\mathrm{o}} \sin \phi_3^{\mathrm{o}} +\sin \phi_1^{\mathrm{o}} \cos\phi_3^{\mathrm{o}}, \\[5pt] R_{33}^{\mathrm{o}}=\cos \phi_1^{\mathrm{o}} \cos \phi_2^{\mathrm{o}}. \end{array} $$
(28)

The vectors representing the rotations of the deck cross-section projected into the global frame \(\{\mbox {$\mbox {\boldmath $e$}$}_{1},\mbox {$\mbox {\boldmath $e$}$}_{2},\mbox {$\mbox {\boldmath $e$}$}_{3}\}\) can be defined as:

$$ \everymath{\displaystyle} \begin{array}{l} \mbox {$\mbox {\boldmath $\Psi $}$}^{\mathrm{o}} = \bigl[\psi^{\mathrm{o}}_1\ \psi^{\mathrm{o}}_2\ \psi^{\mathrm{o}}_3\bigr]^\top,\qquad \breve{\mbox {$\mbox {\boldmath $\Psi $}$}} = \bigl[\breve{\psi}_1, \breve{\psi}_2, \breve{\psi}_3\bigr]^\top, \\[5pt] \psi^{\mathrm{o}}_1 = \phi^{\mathrm{o}}_1 +\phi^{\mathrm{o}}_3 \sin\phi^{\mathrm{o}}_2, \\[5pt] \psi^{\mathrm{o}}_2 = \phi^{\mathrm{o}}_2 \cos\phi^{\mathrm{o}}_1 - \phi^{\mathrm{o}}_3 \sin\phi^{\mathrm{o}}_1 \cos\phi^{\mathrm{o}}_2, \\[5pt] \psi^{\mathrm{o}}_3 =\phi^{\mathrm{o}}_2 \sin\phi^{\mathrm{o}}_1 + \phi^{\mathrm{o}}_3 \cos\phi^{\mathrm{o}}_1 \cos\phi^{\mathrm{o}}_2, \end{array} $$
(29)
$$ \everymath{\displaystyle} \begin{array}{rll} \breve{\psi}_1 &=& \phi_1 \cos\phi^{\mathrm{o}}_2 \cos\phi^{\mathrm{o}}_3 + \phi_2 \bigl(\sin\phi^{\mathrm{o}}_2 \sin\phi_1 \\[5pt] && {} - \cos\phi^{\mathrm{o}}_2 \sin\phi^{\mathrm{o}}_3 \cos\phi_1\bigr) \\[5pt] && {} + \phi_3 \bigl(\sin\phi^{\mathrm{o}}_2 \cos\phi_1 \cos \phi_2 \\[5pt] && {} + \cos\phi^{\mathrm{o}}_2 \sin\phi^{\mathrm{o}}_3 \sin\phi_1 \cos\phi_2 \\[5pt] && {} + \cos\phi^{\mathrm{o}}_2 \cos \phi^{\mathrm{o}}_3 \sin\phi_2\bigr), \\[5pt] \breve{\psi}_2 &=& \phi_1\bigl(\sin\phi^{\mathrm{o}}_1 \sin\phi^{\mathrm{o}}_2 \cos\phi^{\mathrm{o}}_3 + \cos\phi^{\mathrm{o}}_1 \sin\phi^{\mathrm{o}}_3\bigr) \\[5pt] && {} + \phi_2 \bigl[\cos\phi_1 \bigl(\cos\phi^{\mathrm{o}}_1\cos\phi^{\mathrm{o}}_3 \\[5pt] && {} - \sin\phi^{\mathrm{o}}_1 \sin\phi^{\mathrm{o}}_2 \sin\phi^{\mathrm{o}}_3\bigr) - \sin\phi^{\mathrm{o}}_1 \cos\phi^{\mathrm{o}}_2\sin\phi_1 \bigr] \\[5pt] && {} + \phi_3 \bigl[-\sin\phi^{\mathrm{o}}_1 \cos\phi^{\mathrm{o}}_2 \cos\phi_1 \cos\phi_2 \\[5pt] && {} - \sin \phi_1 \cos\phi_2 \bigl(\cos\phi^{\mathrm{o}}_1 \cos \phi^{\mathrm{o}}_3 \\[5pt] && {} - \sin\phi^{\mathrm{o}}_1 \sin\phi^{\mathrm{o}}_2 \sin\phi^{\mathrm{o}}_3\bigr) \\[5pt] && {} + \sin\phi_2 \bigl(\sin\phi^{\mathrm{o}}_1 \sin \phi^{\mathrm{o}}_2 \cos\phi^{\mathrm{o}}_3 +\cos\phi^{\mathrm{o}}_1 \sin\phi^{\mathrm{o}}_3 \bigr) \bigr], \\[5pt] \breve{\psi}_3 &=&\phi_1 \bigl(\sin\phi^{\mathrm{o}}_1 \sin\phi^{\mathrm{o}}_3 - \cos\phi^{\mathrm{o}}_1 \sin\phi^{\mathrm{o}}_2 \cos\phi^{\mathrm{o}}_3 \bigr) \\[5pt] && {} + \phi_2 \bigl[\cos \phi_1\bigl(\sin\phi^{\mathrm{o}}_1 \cos\phi^{\mathrm{o}}_3 \\[5pt] && {} + \cos\phi^{\mathrm{o}}_1 \sin\phi^{\mathrm{o}}_2 \sin\phi^{\mathrm{o}}_3\bigr) + \cos\phi^{\mathrm{o}}_1 \cos\phi^{\mathrm{o}}_2\sin\phi_1 \bigr] \\[5pt] && {} + \phi_3 \bigl[\cos\phi^{\mathrm{o}}_1 \cos\phi^{\mathrm{o}}_2 \cos\phi_1 \cos\phi_2 \\[5pt] && {} - \sin \phi_1 \cos\phi_2 \bigl(\sin\phi^{\mathrm{o}}_1 \cos \phi^{\mathrm{o}}_3 \\[5pt] && {} + \cos\phi^{\mathrm{o}}_1 \sin\phi^{\mathrm{o}}_2 \sin\phi^{\mathrm{o}}_3\bigr) + \sin\phi_2 \bigl(\sin\phi^{\mathrm{o}}_1 \sin \phi^{\mathrm{o}}_3 \\[5pt] && {} -\cos\phi^{\mathrm{o}}_1 \sin\phi^{\mathrm{o}}_2 \cos\phi^{\mathrm{o}}_3\bigr)\bigr]. \end{array} $$
(30)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arena, A., Lacarbonara, W. Nonlinear parametric modeling of suspension bridges under aeroelastic forces: torsional divergence and flutter. Nonlinear Dyn 70, 2487–2510 (2012). https://doi.org/10.1007/s11071-012-0636-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0636-3

Keywords

Navigation