Skip to main content
Log in

Scattering of anti-plane waves by scalene triangular boundary with embedded cavity in anisotropic medium based on mapping space

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Both surface boundary motion and cavity stress concentration have always been concerned in anisotropic medium. In this paper, the mapping function from anisotropic medium to homogeneous medium was established, and the relationship between the free boundary of anisotropic medium and the mapping of homogeneous medium boundary was proved. In the space of homogeneous medium mapping, the wave displacement function was obtained by solving the equation of motion that meets the zero-stress boundary conditions by the variable separation method and the symmetric method. Based on the complex function, the multi-polar coordinate method and the region-matching technique, the algebraic equations were established at auxiliary boundaries and free boundary conditions in the complex domain. Then, according to the sample statistics, instead of the Fourier expansion method, the least square method was used to solve the undetermined coefficient of the algebraic equations by discrete boundary. Finally, the process of the wave propagation was shown in the time domain by inverse Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Trifunac, M.D.: Scattering of plane SH waves by a semi-cylindrical canyon. Earthq. Eng. Struct. Dyn. 1, 267–281 (1973)

    Article  Google Scholar 

  2. Liu, D.K., Han, F.: Scattering of plane SH-wave by cylindrical canyon of arbitrary shape. Soil Dyn. Earthq. Eng. 10(5), 249–255 (1991)

    Article  Google Scholar 

  3. Yuan, X.M., Liao, Z.P.: Scattering of plane SH waves by a cylindrical canyon of circular-arc cross-section. Soil Dyn. Earthq. Eng. 13, 407–412 (1994)

    Article  Google Scholar 

  4. Lee, V.W., Wu, X.Y.: Application of the weighted residual method to diffraction by 2-D canyons of arbitrary shape: I. Incident SH waves. Soil Dyn. Earthq. Eng. 13, 355–364 (1994)

    Article  Google Scholar 

  5. Chen, J., Chen, P., Chen, C.: Surface motion of multiple alluvial valleys for incident plane SH-waves by using a semi-analytical approach. Soil Dyn. Earthq. Eng. 28, 58–72 (2008)

    Article  Google Scholar 

  6. Tsaur, D., Chang, K.: An analytical approach for the scattering of SH waves by a symmetrical V-shaped canyon: shallow case. Geophys. J. Int. 174, 255–264 (2008)

    Article  Google Scholar 

  7. Tsaur, D., Chang, K., Hsu, M.: An analytical approach for the scattering of SH waves by a symmetrical V-shaped canyon: deep case. Geophys. J. Int. 183, 1501–1511 (2010)

    Article  Google Scholar 

  8. Zhang, N., Gao, Y., Cai, Y., Li, D., Wu, Y.: Scattering of SH waves induced by a non-symmetrical V-shaped canyon. Geophys. J. Int. 191, 243–256 (2012)

    Article  Google Scholar 

  9. Chang, K., Tsaur, D., Wang, J.: Scattering of SH waves by a circular sectorial canyon. Geophys. J. Int. 195, 532–543 (2013)

    Article  Google Scholar 

  10. Tsaur, D., Chang, K., Hsu, M.: Ground motions around a deep semielliptic canyon with a horizontal edge subjected to incident plane SH waves. J. Seismol. 22, 1579–1593 (2018)

    Article  Google Scholar 

  11. Lee, V.W., Luo, H., Liang, J.: Antiplane (SH) waves diffraction by a semicircular cylindrical hill revisited: an improved analytic wave series solution. J. Eng. Mech. 132, 1106–1114 (2006)

    Article  Google Scholar 

  12. Yuan, X., Men, F.: Scattering of plane SH waves by a semi-cylindrical hill. Earthq. Eng. Struct. Dyn. 21, 1091–1098 (1992)

    Article  Google Scholar 

  13. Todorovska, M.I., Hayir, A., Trifunac, M.D.: Antiplane response of a dike on flexible embedded foundation to incident SH-waves. Soil Dyn. Earthq. Eng. 21, 593–601 (2001)

    Article  Google Scholar 

  14. Yuan, X., Liao, Z., Trifunac, M.D.: Surface motion of a cylindrical hill of circular-arc cross-section for incident plane SH waves. Soil Dyn. Earthq. Eng. 15, 189–199 (1996)

    Article  Google Scholar 

  15. Qiu, F.Q., Liu, D.K.: Antiplane response of isosceles triangular hill to incident SH waves. Earthq Eng Eng Vib. 4(1), 37–43 (2005)

    Article  Google Scholar 

  16. Lin, S.Z., Qiu, F.Q., Liu, D.K.: Scattering of SH waves by a scalene triangular hill. Earthq Eng Eng Vib. 9(1), 23–38 (2010)

    Article  Google Scholar 

  17. Yang, Z.L., Song, Y.Q., Li, X.Z., Jiang, G.X.X., Yang, Y.: Scattering of plane SH waves by an isosceles trapezoidal hill. Wave Motion 92, 102415 (2020)

    Article  MathSciNet  Google Scholar 

  18. Liang, J.W., Luo, H., Lee, V.W.: Scattering of plane SH waves by a circular-arc hill with a circular tunnel. Acta Seismol. Sin. 17(5), 549–563 (2004)

    Article  Google Scholar 

  19. Shyu, W.S., Teng, T.J.: Hybrid method combines transfinite interpolation with series expansion to simulate the anti-plane response of a surface irregularity. J Mech. 4, 349–360 (2014)

    Article  Google Scholar 

  20. Shyu, W.S., Teng, T.J., Chou, C.S.: Anti-plane response caused by interactions between a dike and the surrounding soil. Soil Dyn. Earthq. Eng. 92, 408–418 (2017)

    Article  Google Scholar 

  21. Liu, D.K.: Dynamic stress concentration around a circular cavity by SH wave in an anisotropic media. Acta Mech Sinica-PRC. 20(5), 443–452 (1988)

    Google Scholar 

  22. Liu, D.K., Han, F.: Scattering of plane SH wave by canyon topography in anisotropic medium. Earthq. Eng. Eng. Dyn. 10(2), 11–24 (1990)

    Google Scholar 

  23. Liu, D.K., Yuan, Y.C.: Far field displacement around a circular cavity caused by SH wave in an anisotropic medium. Earthq. Eng. Eng. Dyn. 8(1), 50–59 (1988). (in Chinese)

    Google Scholar 

  24. Liu, D.K., Xu, Y.Y.: Interaction of multiple semi-cylindrical canyons by plane SH wave in anisotropic media. Acta Mech. Sinica 25(1), 93–102 (1993)

    MathSciNet  Google Scholar 

  25. Liu, D.K., Han, F.: Scattering of plane SH wave by noncircular cavity in anisotropic media. J. Appl. Mech.-T ASME. 60(3), 769–772 (1993)

    Article  Google Scholar 

  26. Chen, Z.G.: Dynamic stress concentration around shallow cylindrical cavity by SH wave in anisotropically elastic half-space. Rock Soil Mech. 33(3), 899–905 (2012)

    Google Scholar 

  27. Martin, P.A.: Scattering by a cavity in an exponentially graded half-space. J, Appl, Mech.. 76(3), 031009 (2009)

    Article  Google Scholar 

  28. Hei, B.P., Yang, Z.L., Sun, B.T., Wang, Y.: Modelling and analysis of the dynamic behavior of inhomogeneous continuum containing a circular inclusion. Appl. Math. Model 39, 7364–7374 (2015)

    Article  MathSciNet  Google Scholar 

  29. Ting, T.C.T.: Existence of anti-plane shear surface waves in anisotropic elastic half-space with depth-dependent material properties. Wave Motion 47, 350–357 (2010)

    Article  MathSciNet  Google Scholar 

  30. Achenbach, J.D., Balogun, O.: Anti-plane surface waves on a half-space with depth-dependent properties. Wave Motion 47, 59–65 (2010)

    Article  MathSciNet  Google Scholar 

  31. Shuvalov, A.L., Poncelet, O., Kiselev, A.P.: Shear horizontal waves in transversely inhomogeneous plates. Wave Motion 45, 605–615 (2008)

    Article  MathSciNet  Google Scholar 

  32. Tian, R., Liu, J.X., Pan, E.N., Wang, Y.S.: SH waves in multilayered piezoelectric semiconductor plates with imperfect interfaces. Eur J Mech A-Solid. 81, 103961 (2020)

    Article  MathSciNet  Google Scholar 

  33. Vishwakarma, S.K., Kaur, R.: Case-wise investigation of body-wave propagation in a cross-anisotropic soil with multiple inhomogeneity coefficients. Appl. Math. Model. 90(10), 1170–1182 (2021)

    Article  MathSciNet  Google Scholar 

  34. Li, Y.Q., Wei, P.J.: Reflection and transmission through a microstructured slab sandwiched by two half-spaces. Eur J Mech A-Solid. 57, 1–17 (2016)

    Article  MathSciNet  Google Scholar 

  35. Zhong, W.F., Nie, G.H.: The scattering of SH wave by numerous inhomogeneities in an anisotropic body. Acta Mech Solida Sin. 9(1), 1–14 (1988)

    Google Scholar 

  36. Zhong, W.F., Qian, W.P.: A boundary element method for calculation the SH wave scattering from arbitrarily shaped holes in an anisotropic medium. Acta Mech. Solida Sin. 11(4), 285–297 (1990)

    Google Scholar 

  37. Du, X.L., Xiong, J.G.: Propagation of SH wave in anisotropic medium and the solution by boundary element method. Eng. Mech. 6(3), 10–18 (1989)

    Google Scholar 

  38. Achenbach, J.D.: Shear waves in an elastic wedge. Int. J. Solids Struct. 6(4), 379–388 (1970)

    Article  Google Scholar 

  39. Song, Y.Q., Li, X.Z.: Seismic response for an isosceles triangle hill subjected to anti-plane shear waves. Acta Geotechn. (2021). https://doi.org/10.1007/S11440-021-01216-7

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Grant No. 2019YFC1509301), the National Natural Science Foundation of China (Grant No. 11872156), the Fundamental Research Funds of the Central Universities and the program of Innovative Research Team in China Earthquake Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zailin Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Expressions of each angle in Fig. 1 model

$$\alpha_{1} = \arctan (n_{1}),\; \alpha_{2} = \arctan (n_{2}),\; \alpha_{3} = \pi - \arctan \left( {\frac{{L + r_{4} + r_{5} }}{{2H_{1}}}} \right),\; \alpha_{4} = \alpha_{1},\; \alpha_{5} = \pi - 2 \angle O_{3} X_{5} X_{4} - \alpha_{1} ,\;\alpha_{6} = \pi - \alpha_{2} ,\;\alpha_{7} = \pi - \alpha_{1} ,$$

where \(\angle O_{3} X_{5} X_{4} = \arccos \left( {\frac{{L_{{X_{5} X_{4} }}^{2} + L_{{X_{5} O}}^{2} - L_{{OX_{4} }}^{2} }}{{2L_{{X_{5} X_{4} }}^{{}} L_{{X_{5} O}}^{{}} }}} \right)\),

\(L_{{X_{5} X_{4} }}^{{}} = \sqrt {\left[ {r_{5} \cos \left( {\alpha_{1} } \right) - r_{4} \cos \left( {\alpha_{2} } \right)} \right]^{2} + \left[ {L - r_{5} \sin \left( {\alpha_{1} } \right) - r_{4} \sin \left( {\alpha_{2} } \right)} \right]^{2} }\), \(L_{{OX_{4} }}^{{}} = {H \mathord{\left/ {\vphantom {H {\cos \left( {\alpha_{2} } \right)}}} \right. \kern-\nulldelimiterspace} {\cos \left( {\alpha_{2} } \right)}} - r_{4}\), \(L_{{OX_{5} }}^{{}} = {H \mathord{\left/ {\vphantom {H {\cos \left( {\alpha_{1} } \right)}}} \right. \kern-\nulldelimiterspace} {\cos \left( {\alpha_{1} } \right)}} - r_{5}\), \(r_{3} = {{L_{{X_{5} X_{4} }}^{{}} } \mathord{\left/ {\vphantom {{L_{{X_{5} X_{4} }}^{{}} } {\left( {2{\text{sin((}}\alpha_{{4}} { + }\alpha_{{5}} {)/2)}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2{\text{sin((}}\alpha_{{4}} { + }\alpha_{{5}} {)/2)}} \right)}}\), \(H_{3} = \left( {r_{3} + r_{5} } \right)\cos (\alpha_{4} )\).

Appendix B

Expressions of functions

$$\tilde{c}_{nm}^{3} = W_{0} \left. {J_{{mp_{0} }} \left( {K_{1} \left| {\user2{\not\xi }\left( {Z_{3} + b_{03} } \right){\text{e}}^{{q_{0} i}} } \right|} \right)\left[ {\left( {\frac{{\user2{\not\xi }\left( {Z_{3} + b_{03} } \right){\text{e}}^{{q_{0} i}} }}{{\left| {\user2{\not\xi }\left( {Z_{3} + b_{03} } \right){\text{e}}^{{q_{0} i}} } \right|}}} \right)^{{mp_{0} }} + \left( { - 1} \right)^{m} \left( {\frac{{\user2{\not\xi }\left( {Z_{3} + b_{03} } \right){\text{e}}^{{q_{0} i}} }}{{\left| {\user2{\not\xi }\left( {Z_{3} + b_{03} } \right){\text{e}}^{{q_{0} i}} } \right|}}} \right)^{{ - mp_{0} }} } \right]} \right|_{{\begin{array}{*{20}c} {\left| {Z_{3} } \right| = r_{3} } \\ { - \alpha_{5} \le \varphi_{n} (Z_{3} ) \le \alpha_{4} } \\ \end{array} }}$$
$$\tilde{i}_{nm}^{3} = \left. {W_{0} J_{m}^{{}} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{3} + b_{13} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{3} + b_{13} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{3} + b_{13} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{3} } \right| = r_{3} } \\ { - \alpha_{5} \le \varphi_{n} (Z_{3} ) \le \alpha_{4} } \\ \end{array} }}$$
$$\tilde{k}_{nm}^{3} = \left. {W_{0} H_{m}^{1} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{3} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{3} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{3} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{3} } \right| = r_{3} } \\ { - \alpha_{5} \le \varphi_{n} (Z_{3} ) \le \alpha_{4} } \\ \end{array} }}$$
$$\tilde{m}_{nm}^{3} = \left. {W_{0} H_{m}^{1} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{3} + b_{43} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{3} + b_{43} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{3} + b_{43} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{3} } \right| = r_{3} } \\ { - \alpha_{5} \le \varphi_{n} (Z_{3} ) \le \alpha_{4} } \\ \end{array} }}$$
$$\tilde{n}_{nm}^{3} = \left. {W_{0} H_{m}^{1} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{3} + b_{53} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{3} + b_{53} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{3} + b_{53} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{3} } \right| = r_{3} } \\ { - \alpha_{5} \le \varphi_{n} (Z_{3} ) \le \alpha_{4} } \\ \end{array} }}$$
$$\tilde{c}_{nm}^{3\tau } = \left. {\tilde{P}_{{mp_{0} }}^{J} \left( {\user2{\not\xi }\left( {Z_{3} + b_{03} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{3} } \right| = r_{3} } \\ { - \alpha_{5} \le \varphi_{n} (Z_{3} ) \le \alpha_{4} } \\ \end{array} }}$$
$$\tilde{i}_{nm}^{3\tau } = \left. {\tilde{P}_{m}^{J} \left( {\user2{\not\xi }\left( {Z_{3} + b_{13} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{3} } \right| = r_{3} } \\ { - \alpha_{5} \le \varphi_{n} (Z_{3} ) \le \alpha_{4} } \\ \end{array} ,\delta = 0}}$$
$$\tilde{k}_{nm}^{3\tau } = \left. {\tilde{P}_{m}^{{H_{1} }} \left( {\user2{\not\xi }\left( {Z_{3} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{3} } \right| = r_{3} } \\ { - \alpha_{5} \le \varphi_{n} (Z_{3} ) \le \alpha_{4} } \\ \end{array} ,\delta = 0}}$$
$$\tilde{m}_{nm}^{3\tau } = \left. {\tilde{P}_{m}^{{H_{1} }} \left( {\user2{\not\xi }\left( {Z_{3} + b_{43} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{3} } \right| = r_{3} } \\ { - \alpha_{5} \le \varphi_{n} (Z_{3} ) \le \alpha_{4} } \\ \end{array} ,\delta = 0}}$$
$$\tilde{n}_{nm}^{3\tau } = \left. {\tilde{P}_{m}^{{H_{1} }} \left( {\user2{\not\xi }\left( {Z_{3} + b_{53} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{3} } \right| = r_{3} } \\ { - \alpha_{5} \le \varphi_{n} (Z_{3} ) \le \alpha_{4} } \\ \end{array} ,\delta = 0}}$$
$$\tilde{f}_{nm}^{4} = W_{0} \left. {J_{{mp_{4} }} \left( {K_{4} \left| {\user2{\not\xi }\left( {Z_{4} } \right){\text{e}}^{{q_{4} i}} } \right|} \right)\left[ {\left( {\frac{{\user2{\not\xi }\left( {Z_{4} } \right){\text{e}}^{{q_{4} i}} }}{{\user2{\not\xi }\left( {Z_{4} } \right){\text{e}}^{{q_{4} i}} }}} \right)^{{mp_{4} }} + \left( { - 1} \right)^{m} \left( {\frac{{\user2{\not\xi }\left( {Z_{4} } \right){\text{e}}^{{q_{4} i}} }}{{\left| {\user2{\not\xi }\left( {Z_{4} } \right){\text{e}}^{{q_{4} i}} } \right|}}} \right)^{{ - mp_{4} }} } \right]} \right|_{{\begin{array}{*{20}c} {\left| {Z_{4} } \right| = r_{4} } \\ { - \pi /2 \le \varphi_{n} (Z_{4} ) \le \alpha_{6} } \\ \end{array} }}$$
$$\tilde{i}_{nm}^{4} = \left. {W_{0} J_{m}^{{}} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{4} + b_{14} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{4} + b_{14} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{4} + b_{14} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{4} } \right| = r_{4} } \\ { - \pi /2 \le \varphi_{n} (Z_{4} ) \le \alpha_{6} } \\ \end{array} }}$$
$$\tilde{k}_{nm}^{4} = \left. {W_{0} H_{m}^{1} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{4} + b_{34} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{4} + b_{34} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{4} + b_{34} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{4} } \right| = r_{4} } \\ { - \pi /2 \le \varphi_{n} (Z_{4} ) \le \alpha_{6} } \\ \end{array} }}$$
$$\tilde{m}_{nm}^{4} = \left. {W_{0} H_{m}^{1} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{4} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{4} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{4} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{4} } \right| = r_{4} } \\ { - \pi /2 \le \varphi_{n} (Z_{4} ) \le \alpha_{6} } \\ \end{array} }}$$
$$\tilde{n}_{nm}^{4} = \left. {W_{0} H_{m}^{1} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{4} + b_{54} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{4} + b_{54} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{4} + b_{54} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{4} } \right| = r_{4} } \\ { - \pi /2 \le \varphi_{n} (Z_{4} ) \le \alpha_{6} } \\ \end{array} }}$$
$$\tilde{f}_{nm}^{4\tau } = \left. {\tilde{P}_{{mp_{0} }}^{J} \left( {\user2{\not\xi }\left( {Z_{4} + b_{04} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{4} } \right| = r_{4} } \\ { - \pi /2 \le \varphi_{n} (Z_{4} ) \le \alpha_{6} } \\ \end{array} }}$$
$$\tilde{i}_{nm}^{4\tau } = \left. {\tilde{P}_{m}^{J} \left( {\user2{\not\xi }\left( {Z_{4} + b_{14} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{4} } \right| = r_{4} } \\ { - \pi /2 \le \varphi_{n} (Z_{4} ) \le \alpha_{6} } \\ \end{array} ,\delta = 0}}$$
$$\tilde{k}_{nm}^{4\tau } = \left. {\tilde{P}_{m}^{{H_{1} }} \left( {\user2{\not\xi }\left( {Z_{4} + b_{34} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{4} } \right| = r_{4} } \\ { - \pi /2 \le \varphi_{n} (Z_{4} ) \le \alpha_{6} } \\ \end{array} ,\delta = 0}}$$
$$\tilde{m}_{nm}^{4\tau } = \left. {\tilde{P}_{m}^{{H_{1} }} \left( {\user2{\not\xi }\left( {Z_{4} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{4} } \right| = r_{4} } \\ { - \pi /2 \le \varphi_{n} (Z_{4} ) \le \alpha_{6} } \\ \end{array} ,\delta = 0}}$$
$$\tilde{n}_{nm}^{4\tau } = \left. {\tilde{P}_{m}^{{H_{1} }} \left( {\user2{\not\xi }\left( {Z_{4} + b_{54} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{4} } \right| = r_{4} } \\ { - \pi /2 \le \varphi_{n} (Z_{4} ) \le \alpha_{6} } \\ \end{array} ,\delta = 0}}$$
$$\tilde{g}_{nm}^{5} = W_{0} \left. {J_{{mp_{5} }} \left( {K_{5} \left| {\user2{\not\xi }\left( {Z_{5} } \right){\text{e}}^{{q_{5} i}} } \right|} \right)\left[ {\left( {\frac{{\user2{\not\xi }\left( {Z_{5} } \right){\text{e}}^{{q_{5} i}} }}{{\user2{\not\xi }\left( {Z_{5} } \right){\text{e}}^{{q_{5} i}} }}} \right)^{{mp_{5} }} + \left( { - 1} \right)^{m} \left( {\frac{{\user2{\not\xi }\left( {Z_{5} } \right){\text{e}}^{{q_{5} i}} }}{{\left| {\user2{\not\xi }\left( {Z_{5} } \right){\text{e}}^{{q_{5} i}} } \right|}}} \right)^{{ - mp_{5} }} } \right]} \right|_{{\begin{array}{*{20}c} {\left| {Z_{5} } \right| = r_{5} } \\ { - \alpha_{7} \le \varphi_{n} (Z_{5} ) \le \pi /2} \\ \end{array} }}$$
$$\tilde{i}_{nm}^{5} = \left. {W_{0} J_{m}^{{}} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{5} + b_{15} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{5} + b_{15} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{5} + b_{15} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{5} } \right| = r_{5} } \\ { - \alpha_{7} \le \varphi_{n} (Z_{5} ) \le \pi /2} \\ \end{array} }}$$
$$\tilde{k}_{nm}^{5} = \left. {W_{0} H_{m}^{1} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{5} + b_{35} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{5} + b_{35} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{5} + b_{35} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{5} } \right| = r_{5} } \\ { - \alpha_{7} \le \varphi_{n} (Z_{5} ) \le \pi /2} \\ \end{array} }}$$
$$\tilde{m}_{nm}^{5} = \left. {W_{0} H_{m}^{1} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{5} + b_{45} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{5} + b_{45} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{5} + b_{45} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{5} } \right| = r_{5} } \\ { - \alpha_{7} \le \varphi_{n} (Z_{5} ) \le \pi /2} \\ \end{array} }}$$
$$\tilde{n}_{nm}^{5} = \left. {W_{0} H_{m}^{1} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{5} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{5} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{5} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{5} } \right| = r_{5} } \\ { - \alpha_{7} \le \varphi_{n} (Z_{5} ) \le \pi /2} \\ \end{array} }}$$
$$\tilde{g}_{nm}^{5\tau } = \left. {\tilde{P}_{{mp_{0} }}^{J} \left( {\user2{\not\xi }\left( {Z_{5} + b_{05} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{5} } \right| = r_{5} } \\ { - \alpha_{7} \le \varphi_{n} (Z_{5} ) \le \pi /2} \\ \end{array} }}$$
$$\tilde{i}_{nm}^{5\tau } = \left. {\tilde{P}_{m}^{J} \left( {\user2{\not\xi }\left( {Z_{5} + b_{15} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{5} } \right| = r_{5} } \\ { - \alpha_{7} \le \varphi_{n} (Z_{5} ) \le \pi /2} \\ \end{array} ,\delta = 0}}$$
$$\tilde{k}_{nm}^{5\tau } = \left. {\tilde{P}_{m}^{{H_{1} }} \left( {\user2{\not\xi }\left( {Z_{5} + b_{35} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{5} } \right| = r_{5} } \\ { - \alpha_{7} \le \varphi_{n} (Z_{5} ) \le \pi /2} \\ \end{array} ,\delta = 0}}$$
$$\tilde{m}_{nm}^{5\tau } = \left. {P_{m}^{{H_{1} }} \left( {\user2{\not\xi }\left( {Z_{5} + b_{45} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{5} } \right| = r_{5} } \\ { - \alpha_{7} \le \varphi_{n} (Z_{5} ) \le \pi /2} \\ \end{array} ,\delta = 0}}$$
$$\tilde{n}_{nm}^{5\tau } = \left. {\frac{{\mu_{3} K_{3} W_{0} }}{2}P_{m}^{{H_{1} }} \left( {\user2{\not\xi }\left( {Z_{5} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{5} } \right| = r_{5} } \\ { - \alpha_{7} \le \varphi_{n} (Z_{5} ) \le \pi /2} \\ \end{array} ,\delta = 0}}$$
$$\tilde{d}_{nm}^{1} = W_{0} \left. {\left[ \begin{gathered} H_{m}^{1} \left( {K_{2} \left| {\user2{\not\xi }\left( {Z_{1} + b_{61} } \right) - \user2{\not\xi }\left( {H_{1} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{1} + b_{61} } \right) - \user2{\not\xi }\left( {H_{1} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{1} + b_{61} } \right) - \user2{\not\xi }\left( {H_{1} } \right)} \right|}}} \right)^{m} + \hfill \\ \left( { - 1} \right)^{m} H_{m}^{1} \left( {K_{2} \left| {\user2{\not\xi }\left( {Z_{1} + b_{61} } \right) + \user2{\not\xi }\left( {H_{1} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{1} + b_{61} } \right) + \user2{\not\xi }\left( {H_{1} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{1} + b_{61} } \right) + \user2{\not\xi }\left( {H_{1} } \right)} \right|}}} \right)^{ - m} \hfill \\ \end{gathered} \right]} \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \varphi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} }}$$
$$\tilde{e}_{nm}^{1} = \left. {W_{0} \left[ \begin{gathered} H_{m}^{1} \left( {K_{2} \left| {\user2{\not\xi }\left( {Z_{1} + b_{71} } \right) - \user2{\not\xi }\left( {H_{2} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{1} + b_{71} } \right) - \user2{\not\xi }\left( {H_{2} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{1} + b_{71} } \right) - \user2{\not\xi }\left( {H_{2} } \right)} \right|}}} \right)^{m} + \hfill \\ \left( { - 1} \right)^{m} H_{m}^{1} \left( {K_{2} \left| {\user2{\not\xi }\left( {Z_{1} + b_{71} } \right) + \user2{\not\xi }\left( {H_{2} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{1} + b_{71} } \right) + \user2{\not\xi }\left( {H_{2} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{1} + b_{71} } \right) + \user2{\not\xi }\left( {H_{2} } \right)} \right|}}} \right)^{ - m} \hfill \\ \end{gathered} \right]} \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \varphi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} }}$$
$$\tilde{i}_{nm}^{1} = \left. {W_{0} J_{m}^{{}} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{1} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{1} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{1} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \varphi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} }}$$
$$\tilde{k}_{nm}^{1} = \left. {W_{0} H_{m}^{1} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{1} + b_{31} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{1} + b_{31} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{1} + b_{31} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \varphi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} }}$$
$$\tilde{m}_{nm}^{1} = \left. {W_{0} H_{m}^{1} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{1} + b_{41} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{1} + b_{41} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{1} + b_{41} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \varphi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} }}$$
$$\tilde{n}_{nm}^{1} = \left. {W_{0} H_{m}^{1} \left( {K_{3} \left| {\user2{\not\xi }\left( {Z_{1} + b_{51} } \right)} \right|} \right)\left( {\frac{{\user2{\not\xi }\left( {Z_{1} + b_{51} } \right)}}{{\left| {\user2{\not\xi }\left( {Z_{1} + b_{51} } \right)} \right|}}} \right)^{m} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \varphi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} }}$$
$$\tilde{d}_{nm}^{1\tau } = \left. {\tilde{P}_{{mp_{0} }}^{{H_{1} }} \left( {\user2{\not\xi }\left( {Z_{1} + b_{61} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \varphi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} }}$$
$$\tilde{e}_{nm}^{1\tau } = \left. {\tilde{P}_{{mp_{0} }}^{{H_{1} }} \left( {\user2{\not\xi }\left( {Z_{1} + b_{71} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \varphi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} }}$$
$$\tilde{i}_{nm}^{1\tau } = \left. {\tilde{P}_{m}^{J} \left( {Z_{1} } \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \varphi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} ,\delta = 0}}$$
$$\tilde{k}_{nm}^{1\tau } = \left. {\tilde{P}_{m}^{{H_{1} }} \left( {Z_{1} + b_{31} } \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \varphi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} ,\delta = 0}}$$
$$\tilde{m}_{nm}^{1\tau } = \left. {\tilde{P}_{m}^{{H_{1} }} \left( {Z_{1} + b_{41} } \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \varphi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} ,\delta = 0}}$$
$$\tilde{n}_{nm}^{1\tau } = \left. {\tilde{P}_{m}^{{H_{1} }} \left( {Z_{1} + b_{51} } \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \varphi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} ,\delta = 0}}$$
$$\zeta_{nm}^{1} = \left. {W_{0} {\text{e}}^{{\frac{{ - iK_{2}^{i} }}{2}(\left( {Z_{1} + b_{31} } \right){\text{e}}^{{\alpha_{i} i}} + \overline{{\left( {Z_{1} + b_{31} } \right)}} {\text{e}}^{{ - \alpha_{i} i}} )}} + W_{0} {\text{e}}^{{\frac{{iK_{2}^{r} }}{2}(\left( {Z_{1} + b_{31} } \right){\text{e}}^{{ - \alpha_{r} i}} + \overline{{\left( {Z_{1} + b_{31} } \right)}} {\text{e}}^{{\alpha_{r} i}} )}} } \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \phi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} }}$$
$$\zeta_{nm}^{1\tau } = \left. {\frac{1}{2}\left\{ \begin{gathered} \left[ {\left( {C_{55} + C_{44} } \right)U\left( {Z_{1} + b_{31} } \right) + \left( {C_{55} - C_{44} - 2C_{45} i} \right)V\left( {Z_{1} + b_{31} } \right)} \right]{\text{e}}^{{\theta_{1} i}} + \hfill \\ \left[ {\left( {C_{55} - C_{44} + 2C_{45} i} \right)U\left( {Z_{1} + b_{31} } \right) + \left( {C_{55} + C_{44} } \right)V\left( {Z_{1} + b_{31} } \right)} \right]{\text{e}}^{{ - \theta_{1} i}} \hfill \\ \end{gathered} \right\}} \right|_{{\begin{array}{*{20}c} {\left| {Z_{1} } \right| = r_{1} } \\ { - \alpha_{3} \le \phi_{n} (Z_{1} ) \le \alpha_{3} } \\ \end{array} }}$$
$$\tilde{d}_{nm}^{2\tau } = \left. {\tilde{P}_{m}^{{H_{1} }} \left( {\user2{\not\xi }\left( {Z_{2} + b_{62} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{2} } \right| = r_{2} } \\ { - \pi \le \varphi_{n} (Z_{2} ) \le \pi } \\ \end{array} }}$$
$$\tilde{f}_{nm}^{2\tau } = \left. {\tilde{P}_{m}^{{H_{1} }} \left( {\user2{\not\xi }\left( {Z_{2} + b_{72} } \right)} \right)} \right|_{{\begin{array}{*{20}c} {\left| {Z_{2} } \right| = r_{2} } \\ { - \pi \le \varphi_{n} (Z_{2} ) \le \pi } \\ \end{array} }}$$
$$\zeta_{n}^{2\tau } = \left. {\frac{1}{2}\left\{ \begin{gathered} \left[ {\left( {C_{55} + C_{44} } \right)U\left( {Z_{2} + b_{32} } \right) + \left( {C_{55} - C_{44} - 2C_{45} i} \right)V\left( {Z_{2} + b_{32} } \right)} \right]{\text{e}}^{{\theta_{2} i}} + \hfill \\ \left[ {\left( {C_{55} - C_{44} + 2C_{45} i} \right)U\left( {Z_{2} + b_{32} } \right) + \left( {C_{55} + C_{44} } \right)V\left( {Z_{2} + b_{32} } \right)} \right]{\text{e}}^{{ - \theta_{2} i}} \hfill \\ \end{gathered} \right\}} \right|_{{\begin{array}{*{20}c} {\left| {Z_{2} } \right| = r_{2} } \\ { - \pi \le \phi_{n} (Z_{2} ) \le \pi } \\ \end{array} }}$$

where \(\left| {Z_{j} } \right|\), \(\varphi_{n} (Z_{j} )\) represents the modulus and phase angle of complex numbers, respectively.

$$\begin{array}{*{20}l} {f_{1}^{r} = \frac{1}{4}\left[ {\left( {C_{55} + C_{44} } \right)\left( {\overline{\gamma }_{1} } \right) + \left( {C_{55} - C_{44} - 2C_{45} i} \right)\left( { - \gamma_{2} } \right)} \right]} \hfill & {f_{1}^{\theta } = \frac{1}{4}\left[ {\left( {C_{55} i + C_{44} i} \right)\left( {\overline{\gamma }_{1} } \right) + \left( {C_{55} i - C_{44} i + 2C_{45} } \right)\left( { - \gamma_{2} } \right)} \right]} \hfill \\ {f_{2}^{r} = \frac{1}{4}\left[ {\left( {C_{55} + C_{44} } \right)\left( { - \overline{\gamma }_{2} } \right) + \left( {C_{55} - C_{44} - 2C_{45} i} \right)\left( {\gamma_{1} } \right)} \right]} \hfill & {f_{2}^{\theta } = \frac{1}{4}\left[ {\left( {C_{55} i + C_{44} i} \right)\left( { - \overline{\gamma }_{2} } \right) + \left( {C_{55} i - C_{44} i + 2C_{45} } \right)\left( {\gamma_{1} } \right)} \right]} \hfill \\ {f_{3}^{r} = \frac{1}{4}\left[ {\left( {C_{55} - C_{44} + 2C_{45} i} \right)\left( {\overline{\gamma }_{1} } \right) + \left( {C_{55} + C_{44} } \right)\left( { - \gamma_{2} } \right)} \right]} \hfill & {f_{3}^{\theta } = \frac{1}{4}\left[ {\left( { - C_{55} i + C_{44} i + 2C_{45} } \right)\left( {\overline{\gamma }_{1} } \right) + \left( { - C_{55} i - C_{44} i} \right)\left( { - \gamma_{2} } \right)} \right]} \hfill \\ {f_{4}^{r} = \frac{1}{4}\left[ {\left( {C_{55} - C_{44} + 2C_{45} i} \right)\left( { - \overline{\gamma }_{2} } \right) + \left( {C_{55} + C_{44} } \right)\left( {\gamma_{1} } \right)} \right]} \hfill & {f_{4}^{\theta } = \frac{1}{4}\left[ {\left( { - C_{55} i + C_{44} i + 2C_{45} } \right)\left( { - \overline{\gamma }_{2} } \right) + \left( { - C_{55} i - C_{44} i} \right)\left( {\gamma_{1} } \right)} \right]} \hfill \\ \end{array}$$
$$\begin{gathered} P_{t}^{H} (s) = \frac{{W_{0} k}}{2}\left\{ {H_{{_{t - 1} }}^{{}} (k\left| {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{s} } \right|)\left[ {\frac{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{s} }}{{\left| {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{s} } \right|}}} \right]^{t - 1} - \left( { - 1} \right)^{m} \kappa H_{{_{t + 1} }}^{{}} (k\left| {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} } \right|)\left[ {\frac{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} }}{{\left| {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} } \right|}}} \right]^{ - t - 1} } \right\}{\text{e}}^{qi} \hfill \\ Q_{t}^{H} (s) = \frac{{W_{0} k}}{2}\left\{ { - H_{{_{t + 1} }}^{{}} (k\left| {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{s} } \right|)\left[ {\frac{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{s} }}{{\left| {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{s} } \right|}}} \right]^{t + 1} + \left( { - 1} \right)^{m} \kappa H_{{_{t - 1} }}^{{}} (k\left| {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} } \right|)\left[ {\frac{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} }}{{\left| {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} } \right|}}} \right]^{ - t + 1} } \right\}{\text{e}}^{ - qi} \hfill \\ \end{gathered}$$
$$\begin{gathered} \tilde{P}_{t}^{H} (s) = \left( {f_{1}^{r} P_{t}^{H} (s) + f_{2}^{r} Q_{t}^{H} (s)} \right){\text{e}}^{\theta i} + \left( {f_{3}^{r} P_{t}^{H} (s) + f_{4}^{r} Q_{t}^{H} (s)} \right){\text{e}}^{ - \theta i} \hfill \\ \tilde{Q}_{t}^{H} (s) = \left( {f_{1}^{\theta } P_{t}^{H} (s) + f_{2}^{\theta } Q_{t}^{H} (s)} \right){\text{e}}^{\theta i} + \left( {f_{3}^{\theta } P_{t}^{H} (s) + f_{4}^{\theta } Q_{t}^{H} (s)} \right){\text{e}}^{ - \theta i} \hfill \\ \end{gathered}$$

where \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{s} = \left[ {\user2{\not\xi }\left( s \right) - \user2{\not\xi }\left( {H_{j} } \right)} \right]{\text{e}}^{qi}\),\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} = \left[ {\user2{\not\xi }\left( s \right) + \overline{\user2{\not\xi }}\left( {H_{j} } \right)} \right]{\text{e}}^{qi}\), \(H_{j}\) is the depth of the corresponding circle center from the surface and takes a negative value if it is above the horizontal plane. H is Bessel functions or Hankel function. \(P_{t}^{H} (s)\), \(Q_{t}^{H} (s)\) represent \(\frac{\partial w}{{\partial \xi }}\),\(\frac{\partial w}{{\partial \overline{\xi }}}\). \(\delta = \left\{ {\begin{array}{*{20}c} 0 & {given} \\ 1 & {else} \\ \end{array} } \right.\)

$$\begin{gathered} U\left( {{\text{z}}_{3j} } \right) = \left( {\frac{{ - iK_{2}^{i} }}{2}{\text{e}}^{{\alpha_{i} i}} } \right)W_{0} {\text{e}}^{{\frac{{ - iK_{2}^{i} }}{2}({\text{z}}_{3j} {\text{e}}^{{\alpha_{i} i}} + {\overline{\text{z}}}_{3j} {\text{e}}^{{ - \alpha_{i} i}} )}} + \left( {\frac{{iK_{2}^{r} }}{2}{\text{e}}^{{ - \alpha_{r} i}} } \right)W_{0} {\text{e}}^{{\frac{{iK_{2}^{r} }}{2}({\text{z}}_{3j} {\text{e}}^{{ - \alpha_{r} i}} + {\overline{\text{z}}}_{3j} {\text{e}}^{{\alpha_{r} i}} )}} \hfill \\ V\left( {{\text{z}}_{3j} } \right) = \left( {\frac{{ - iK_{2}^{i} }}{2}{\text{e}}^{{ - \alpha_{i} i}} } \right)W_{0} {\text{e}}^{{\frac{{ - iK_{2}^{i} }}{2}({\text{z}}_{3j} {\text{e}}^{{\alpha_{i} i}} + {\overline{\text{z}}}_{3j} {\text{e}}^{{ - \alpha_{i} i}} )}} + \left( {\frac{{iK_{2}^{r} }}{2}{\text{e}}^{{\alpha_{r} i}} } \right)W_{0} {\text{e}}^{{\frac{{iK_{2}^{r} }}{2}({\text{z}}_{3j} {\text{e}}^{{ - \alpha_{r} i}} + {\overline{\text{z}}}_{3j} {\text{e}}^{{\alpha_{r} i}} )}} \hfill \\ \end{gathered}$$

where \(U\left( {{\text{z}}_{3j} } \right)\), \(V\left( {{\text{z}}_{3j} } \right)\) represent \(\frac{\partial w}{{\partial z}}\), \(\frac{\partial w}{{\partial \overline{z}}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Li, Y., Lin, H. et al. Scattering of anti-plane waves by scalene triangular boundary with embedded cavity in anisotropic medium based on mapping space. Arch Appl Mech 92, 1879–1903 (2022). https://doi.org/10.1007/s00419-022-02154-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02154-w

Keywords

Navigation