Skip to main content
Log in

Analytical modeling and experimental validation of a butterfly-shaped piezoelectric composite transducer

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an analytical model of a butterfly-shaped piezoelectric composite transducer. The vibration model of the transducer is firstly established based on the lateral and longitudinal deformations of the uniform and variable cross-sectional beams. Next, the electromechanical coupling model of the transducer is derived according to the vibration model. Then, the results of the derived model are presented, both the influence of the length of the rear-end block and the height of the cross beam are discussed based on the analytical model. Finally, an experimental prototype of the transducer is fabricated. The vibration modes and impedance characteristics of the transducer are, respectively, tested by using a laser Doppler vibro-meter, and an impedance analyzer and the testing results validate the proposed analytical model. The experimental results show that the relative errors of the analytical model are 2.253% and 2.230%, and the relative errors of the effective electromechanical coupling coefficients were 8.826% and 8.203%. In addition, the mode shapes of the analytical model are in good agreement with the experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhao, C.: Ultrasonic Motors: Technologies and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Bansevičius, R., Kulvietis, G., Mazeika, D.: Piezoelectric active bearings and supports: structures, characteristics and applications. Arch. Appl. Mech. 86, 1697–1706 (2016)

    Article  Google Scholar 

  3. Kishi, T., Kiyama, Y., Kanda, T., Suzumori, K., Seno, N.: Microdroplet generation using an ultrasonic torsional transducer which has a micropore with a tapered nozzle. Arch. Appl. Mech. 86, 1751–1762 (2016)

    Article  Google Scholar 

  4. He, Y., Yao, Z., Dai, S., Zhang, B.: Hybrid simulation for dynamic responses and performance estimation of linear ultrasonic motors. Int. J. Mech. Sci. 153–154, 219–229 (2019)

    Article  Google Scholar 

  5. Wang, L., Hofmann, V., Bai, F., Jin, J., Liu, Y., Twiefel.: Systematic electromechanical transfer matrix model of a novel sandwiched type flexural piezoelectric transducer. Int. J. Mech. Sci. 138–139, 229–243 (2018).

  6. Tellers, M.C., Pulskamp, J.S., Bedair, S.S., Rudy, R.Q., Kierzewski, I.M., Polcawich, R.G., Bergbreiter, S.E.: Characterization of a piezoelectric MEMS actuator surface toward motion-enabled reconfigurable RF circuits. J. Micromech. Microeng. 28, 035001 (2018)

    Article  Google Scholar 

  7. Wang, L., Shu, C., Jin, J., Zhang.: A novel traveling wave piezoelectric actuated tracked mobile robot utilizing friction effect. Smart Mater. Struct. 26, 0350033 (2017).

  8. Fang, H., Wang, K.W.: Piezoelectric vibration-driven locomotion systems-Exploiting resonance and bistable dynamics. J. Sound Vib. 391, 153–169 (2017)

    Article  Google Scholar 

  9. Su, H., Shang, W., Cole, G., Li, G., Harrington, K., Camilo, A., Tokuda, J., Tempany, C.M., Hata, N., Fischer, G.S.: Piezoelectrically actuated robotic system for MRI-guided prostate percutaneous therapy. IEEE-ASME Trans. Mech. 20, 1920–1932 (2015)

    Article  Google Scholar 

  10. Lucinskis, R., Mazeika, D., Bansevicius, R.: Investigation of oscillations of piezoelectric actuators with multi-directional polarization. Mech. Syst. Sig. Proc. 99, 450–458 (2018)

    Article  Google Scholar 

  11. Hu, Y., Wang, R., Wen, J., Liu, J.: A low-frequency structure-control-type inertial actuator using miniaturized bimorph piezoelectric vibrators. IEEE Trans. Ind. Electron. 66, 6179–6188 (2019)

    Article  Google Scholar 

  12. Yang, X., Liu, Y., Chen, W., Liu, J.: Sandwich-type multi-degree-of-freedom ultrasonic motor with hybrid excitation. IEEE Access 4, 905–913 (2016)

    Article  Google Scholar 

  13. Mizuno, A., Oikawa, K., Aoyagi, M., Kajiwara, H., Tamura, H., Takano, T.: Examination of high-torque sandwich-type spherical ultrasonic motor using with high-power multimode annular vibrating stator. Actuators. 7, 1–8 (2018)

    Article  Google Scholar 

  14. Choi, M., Park, J., Lee, J.: Design of piezoelectric actuator for braille module by finite element method. J. Nanosci. Nanotechnol. 19, 1308–1314 (2019)

    Article  Google Scholar 

  15. Zhang, Q., Chen, W., Liu, Y., Liu, J., Jiang, Q.: A frog-shaped linear piezoelectric actuator using first-order longitudinal vibration mode. IEEE Trans. Ind. Electron. 64, 2188–2195 (2017)

    Article  Google Scholar 

  16. Li, J., Zhou, X., Zhao, H., Shao, M., Li, N., Zhang, S., Du, Y.: Development of a novel parasitic-type piezoelectric actuator. IEEE-ASME Trans. Mech. 22, 541–550 (2017)

    Article  Google Scholar 

  17. Cheng, T., He, M., Li, H., Lu, X., Zhao, H., Gao, H.: A novel trapezoid-type stick-slip piezoelectric linear actuator using right circular flexure hinge mechanism. IEEE Trans. Ind. Electron. 64, 5545–5552 (2017)

    Article  Google Scholar 

  18. Sammoura, F., Akhbari, S., Lin, L.: An analytical solution for curved piezoelectric micromachined ultrasonic transducers with spherically shaped diaphragms. IEEE Trans. Ultrason. Ferro. Freq. Control. 61, 1533–1544 (2014)

    Article  Google Scholar 

  19. Zhang, Q., Shi, S., Chen, W.: An electromechanical coupling model of a longitudinal vibration type piezoelectric ultrasonic transducer. Ceram. Int. 41, S638–S644 (2015)

    Article  Google Scholar 

  20. Jacek, P., Grzegorz, G.: Nonlinear vibrations of elastic beam with piezoelectric actuators. J. Sound Vib. 437, 150–165 (2018)

    Article  Google Scholar 

  21. Wang, L., Hofmann, V., Bai, F., Jin, J., Twiefel, J.: Modeling of coupled longitudinal and bending vibrations in a sandwich type piezoelectric transducer utilizing the transfer matrix method. Mech. Syst. Signal. Process. 108, 216–237 (2018)

    Article  Google Scholar 

  22. Koutsianitis, P., Tairidis, G., Stavroulakis, G.: Shunted piezoelectric patches on auxetic microstructures for the enhancement of band gaps. Arch. Appl. Mech. 91, 739–751 (2021)

    Article  Google Scholar 

  23. Shi, Y., Li, Y., Zhao, C., Zhang, J.: A new type butterfly-shaped transducer linear ultrasonic motor. J. Intell. Mater. Syst. Struct. 22, 567–575 (2011)

    Article  Google Scholar 

  24. Shi, Y., Chen, C., Zhao, C.: Optimal design of butterfly-shaped linear ultrasonic motor using finite element method and response surface methodology. J. Cent. South. Univ. 20, 393–404 (2013)

    Article  Google Scholar 

  25. Lamberti, N., Iula, A., Pappalardo, M.: The electromechanical coupling factor in static and dynamic conditions. Acust. Acta Acust. 85, 39–46 (1999)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Sciences Foundation of China (No. 51975282).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuyang Lin or Yunlai Shi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Shi, Y., Zhang, J. et al. Analytical modeling and experimental validation of a butterfly-shaped piezoelectric composite transducer. Arch Appl Mech 92, 1695–1709 (2022). https://doi.org/10.1007/s00419-022-02133-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02133-1

Keywords

Navigation