Skip to main content
Log in

Entropy generation in moving exponential porous fins with natural convection, radiation and internal heat generation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this article, convection, radiation and internal heat generation for entropy generation in the moving exponential porous fin are investigated. We have considered fins of fixed dimension with insulated tip and convective coefficient at fin’s tip. The second law of thermodynamics for one-dimensional heat transfer is applied to study the entropy generation in the exponential porous fins. The shooting method is applied to solve the system numericaly. The amount of entropy generation depends on the porosity parameter, temperature distribution, and temperature ratio of the exponential porous fin which is observed. It is also observed that the highest generation of entropy exists at the fin’s base when the temperature difference is increased, at particular values of temperature ratio and porosity parameter. The data also reveal that the effect of porosity parameter on entropy generation number is substantially stronger than the influence of temperature ratio, with an increase in Porosity from 1 to 80 resulting in a 15-time increase in average entropy generation number. However, an increase in temperature ratio from 1.1 to 1.9 results an average of 30% increase in entropy generation number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

\bf Figure 1
\bf Figure 2
\bf Figure 3
\bf Figure 4
\bf Figure 5
\bf Figure 6
\bf Figure 7
\bf Figure 8
\bf Figure 9

Similar content being viewed by others

Abbreviations

A :

Area of fin’s surface m\(^2\)

h :

Convection heat transfer coefficient W/m\(^2\) K

L :

Fins length m

q :

Internal heat generation W

t :

Fin’s thickness m

\(T_{\gamma }\) :

Temperature ratio

U :

Speed of moving fin m/s

x :

Direction along x-axis m

\(C_{p}\) :

Specific heat of the material J/kg K

\(k_\mathrm{eff}\) :

Effective thermal conductivity W/m K

\(k_{f}\) :

Air thermal conductivity W/m K

\(N_{r}\) :

Dimensionless radiation parameter

\(R_{a}\) :

Rayleigh number \(\beta \,t^3\,(T-T_{a})/\lambda \,\nu \)

\(T_{a}\) :

Ambient temperature K

\(\alpha \) :

Fin shape parameter

\(\beta \) :

Volume expansion coefficient K\(^{-1}\)

\(\varepsilon \) :

Surface emissivity

\(\lambda \) :

Thermal diffusivity of air m\(^2\)/s

\(\varphi \) :

Porosity of the fin

\(\theta _{a}\) :

Dimensionless ambient temperature

g :

Gravitational acceleration m/s\(^{2}\)

K :

Porous fins permeability Darcy

P :

Fins perimeter m

Q :

Dimensionless internal heat generation

T :

Dimensional fin temperature K

\({{\dot{m}}}\) :

Mass flow rate kg/s

W :

Width of the fin m

X :

Dimensionless coordinate

\(D_{a}\) :

Darcy number K/t\(^2\)

\(K_{s}\) :

Solid thermal conductivity W/m K

Bi :

Biot number

\(P_{e}\) :

Peclet number

\(S_{h}\) :

Porosity parameter

\(T_{b}\) :

Base temperature K

\(\alpha ^*\) :

Dimensionless fin shape parameter

\(\sigma \) :

Stefan–Boltzmann constant W/m\(^2\) K\(^4\)

\(\nu \) :

Kinematic viscosity of air m\(^2\)/s

\(\rho \) :

Density of material kg/m\(^3\)

\(\theta \) :

Dimensionless local temperature

References

  1. Khatami, S., Rahbar, N.: An analytical study of entropy generation in rectangular natural convective porous fins. Therm. Sci. Eng. Prog. 11, 142–149 (2019)

    Article  Google Scholar 

  2. Dehghan, M., Valipour, M.S., Saedodin, S.: Microchannels enhanced by porous materials: heat transfer enhancement or pressure drop increment? Energy Convers. Manag. 110, 22–32 (2016)

    Article  Google Scholar 

  3. Schmidt, E.F.: Wärmeübergang und Druckverlust in Rohrschlangen. Chem. Ing. Tech. 39(13), 781–789 (1967)

    Article  Google Scholar 

  4. Duffin, R.: A variational problem relating to cooling fins. J. Math. Mech. 8, 47–56 (1959)

    MathSciNet  MATH  Google Scholar 

  5. Dhar, P., Arora, C.: Optimum design of finned surfaces. J. Frankl. Inst. 301(4), 379–392 (1976)

    Article  Google Scholar 

  6. Kiwan, S.: Effect of radiative losses on the heat transfer from porous fins. Int. J. Therm. Sci. 46, 1046–1055 (2007)

    Article  Google Scholar 

  7. Kiwan, S., Zeitoun, O.: Natural convection in a horizontal cylindrical annulus using porous fins. Int. J. Numer. Heat Fluid Flow 18, 618–634 (2008)

    Article  Google Scholar 

  8. Kiwanand, S., Al-Nimr, M.: Using porous fins for heat transfer enhancement. ASME J. Heat Transf. 123(4), 790–795 (2001)

  9. Saedodin, S., Sadeghi, S.: Temperature distribution in long porous fins in natural convection condition. Middle-East J. Sci. Res. 13, 812–819 (2013)

    Google Scholar 

  10. Gorla, R.S.R., Bakier, A.Y.: Thermal analysis of natural convection and radiation in porous fins. Int. Commun. Heat Mass Transf. 38, 638–645 (2011)

    Article  Google Scholar 

  11. Alshuraiaan, B., Khanafer, K.: The effect of the position of the heated thin porous fin on the laminar natural convection heat transfer in a differentially heated cavity. Int. Commun. Heat Mass Transf. 78, 190–199 (2016)

    Article  Google Scholar 

  12. Oguntala, G.A., Sobamowo, M.G.: Galerkin’s method of weighted residual for a convective straight fin with temperature-dependent conductivity and internal heat generation. Int. J. Eng. Technol. 06, 432–442 (2016)

  13. Sobamowo, M.G.: Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using Galerkin’s method of weighted residual. Appl. Therm. Eng. 99, 1316–1330 (2016)

  14. Shateri, A.R., Salahshour, B.: Comprehensive thermal performance of convection-radiation longitudinal porous fins with various proles and multiple nonlinearities. Int. J. Mech. Sci. 136, 252–263 (2018)

    Article  Google Scholar 

  15. Ma, J., Sun, Y., Li, B., Chen, H.: Spectral collocation method for radiative-conductive porous fin with temperature dependent properties. Energy Convers. Manag. 111, 279–288 (2016)

    Article  Google Scholar 

  16. Oguntala, G., Sobamowo, G., Abd-Alhameed, R., Noras, J.: Numerical investigation of inclination on the thermal performance of porous fin heatsink using pseudospectral collocation method. Karbala Int. J. Mod. Sci. 5 (2019)

  17. Ma, J., Sun, Y., Li, B.: imulation of combined conductive, convective and radiative heat transfer in moving irregular porous fins by spectral element method. Int. J. Therm. Sci. 118, 475–487 (2017)

    Article  Google Scholar 

  18. Oguntala, G., Abd-Alhameed, R., Sobamowo, G., Danjuma, I.: Performance, thermal stability and optimum design analyses of rectangular fin with temperature-dependent thermal properties and internal heat generation. J. Comput. Appl. Mech. 49, 37–43 (2018)

    Google Scholar 

  19. Oguntala, G., Abd-Alhameed, R.A.: Haar wavelet collocation method for thermal analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation. J. Appl. Comput. Mech. 3, 185–191 (2017)

    Google Scholar 

  20. Torabi, M., Yaghoobi, H.: Series solution for convective-radiative porous fin using differential transformation method. J. Porous Media 16, 341–349 (2013)

    Article  Google Scholar 

  21. Moradi, A., Hayat, T., Alsaedi, A.: Convection-radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by DTM. Energy Convers. Manag. 77, 70–77 (2014)

    Article  Google Scholar 

  22. Torabi, M., Yaghoobi, H., Aziz, A.: Analytical solution for convective-radiative continuously moving fin with temperature-dependent thermal conductivity. Int. J. Thermophys. 33, 924–941 (2012)

    Article  Google Scholar 

  23. Coskun, S.B., Atay, M.T.: Fin efficiency analysis of convective straight fins with temperature-dependent thermal conductivity using variational iteration method. Appl. Therm. Eng. 28, 2345–2352 (2008)

    Article  Google Scholar 

  24. Singla, R.K., Das, R.: Application of decomposition method and inverse prediction of parameters in a moving fin. Energy Convers. Manag. 84, 268–281 (2014)

    Article  Google Scholar 

  25. Singla, R.K., Das, R.: Adomian decomposition method for a stepped fin with all temperature-dependent modes of heat transfer. Int. J. Heat Mass Transf. 82, 447–459 (2015)

    Article  Google Scholar 

  26. Rashidi, M.M., Erfani, E.: New analytical method for solving Burgers and nonlinear heat transfer equations and comparison with HAM. Comput. Phys. Commun. 180, 1539–1544 (2009)

    Article  MathSciNet  Google Scholar 

  27. Domairry, G., Ahangari, M., Jamshidi, M.: Exact and analytical solution for nonlinear dispersive K(m, p) equations using homotopy perturbation method. Phys. Lett. A 368(3–4), 266–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bhanja, D., Kundu, B., Mandal, P.K.: Thermal analysis of porous pin fin used for electronic cooling. Procedia Eng. 64, 956–965 (2013)

    Article  Google Scholar 

  29. Singh, K., Das, R., Kundu, B.: Approximate analytical method for porous stepped fins with temperature-dependent heat transfer parameters. J. Thermophys. Heat Transf. 30, 661–672 (2016)

    Article  Google Scholar 

  30. Cucu, E., Cucu, P.M.: A successful application of homotopy perturbation method for efficiency and effectiveness assessment of longitudinal porous fins. Energy Convers. Manag. 93, 92–99 (2015)

    Article  Google Scholar 

  31. Deghan, M., Nesaz, Z.A., Pourrajabian, A., Rashidi, S.: On the forced convective flow inside thermal collectors enhanced by porous media: from macro to micro-channels. Int. J. Numer. Methods Heat Fluid Flow (2021)

  32. Deghan, M.: Effects of heat generations on the thermal response of channels partially filled with Non-Darcian porous materials. Transp. Porous Med. 110(3), 461–482 (2015)

    Article  MathSciNet  Google Scholar 

  33. Deghan, M., Valipour, M.S., Saedodin, S.: Analytical study of heat flux splitting in micro-channels filled with porous media. Transp. Porous Med. 109(3), 571–87 (2015)

    Article  MathSciNet  Google Scholar 

  34. Dehghan, M., Valipour, M.S., Saedodin, S.: Conjugate heat transfer inside microchannels filled with porous media: an exact solution. J. Thermophys. Heat Trans. 30(4), 814–824 (2016)

    Article  Google Scholar 

  35. Mahian, O., et al.: A review of entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 65, 514–532 (2013)

    Article  Google Scholar 

  36. Mahian, O., Mahmud, S., Wongwises, S.: Entropy generation between two rotating cylinders with magnetohydrodynamic flow using nanofluids. J. Thermophys. Heat Transf. 27(1), 161–169 (2012)

    Article  Google Scholar 

  37. Bejan, A.: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79(3), 1191–1218 (1996)

    Article  Google Scholar 

  38. Bejan, A.: Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics. R. Gen. Therm. 35(418–419), 637–646 (1996)

    Article  Google Scholar 

  39. Bejan, A.: Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int. J. Energy Res. 26(7) (2002)

  40. Poulikakos, D., Bejan, A.: Fin geometry for minimum entropy generation in forced convection. J. Heat Transf. 104(4), 616–623 (1982)

    Article  Google Scholar 

  41. Rahbar, N., Asadi, A., Fotouhi-Bafghi, E.: Performance evaluation of two solar stills of different geometries: tubular versus triangular: experimental study, numerical simulation, and second law analysis. Desalination 443, 44–55 (2018)

    Article  Google Scholar 

  42. Mahmud, S., Fraser, R.A.: Second law analysis of heat transfer and fluid flow inside a cylindrical annular space. Exergy Int. J. 2, 322–329 (2002)

    Article  Google Scholar 

  43. Kundu, B., Das, R., Lee, K.S.: Differential transform method for thermal analysis of exponential fin under sensible and altent heat transfer. Procedia Eng. 127, 287–294 (2015)

    Article  Google Scholar 

  44. Rahbar, N., Gharaiian, A., Rashidi, S.: Exergy and economic analysis for a double slope solar still equipped by thermoelectric heating modules-an experimental investigation. Desalination 420, 106–113 (2017)

    Article  Google Scholar 

  45. Aliphanah, F., Rahbar, N.: CFD simulation and second law analysis of weir-type cascade solar stills with different number and dimensions of steps. Desalin. Water Treat. 104, 15–27 (2018)

    Article  Google Scholar 

  46. Taufiq, B.N., et al.: Second law analysis for optimal thermal design of radial fin geometry by convection. Appl. Therm. Eng. 27, 1363–1370 (2007)

    Article  Google Scholar 

  47. Abu-Hijleh, B.A., Abu-Qudais, M., Abu Nada, E.: Numerical prediction of entropy generation due to natural convection from a horizontal cylinder. Energy Int. J. 24, 327–333 (1999)

    Article  Google Scholar 

  48. Cui, P., Cai, M., Yang, D.: Effect of defected behavior on interfacial heat transferring performance for HP-LED packaging based on entropy generation analysis. In: 19th International Conference on Electronic Packaging Technology (ICEPT), pp. 423–427 (2018)

  49. Aziz, A., Makinde, O.D.: Heat transfer and entropy generation in a two-dimensional orthotropic convection pin fin. Int. J. Exergy 7(5), 579–59 (2010)

    Article  Google Scholar 

  50. Turkyilmazoglu, M.: Exact solutions to heat transfer in straight fins of varying exponential shape having temperature dependent properties. Int. J. Therm. Sci. 55, 69–79 (2012)

    Article  Google Scholar 

  51. Hatami, M., Hasanpour, A., Ganji, D.D.: Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation. Energy Convers. Manag. 74, 9–16 (2013)

    Article  Google Scholar 

  52. Hatami, M., Ganji, D.D.: Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method. Energy Convers. Manag. 78, 347–358 (2014)

    Article  Google Scholar 

  53. Hatami, M., Ganji, D.D.: Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis. Int. J. Refrig. 40, 149–154 (2014)

    Article  Google Scholar 

  54. Hatami, M., Ganji, D.D.: Thermal behavior of longitudinal convective-radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4). Ceram. Int. 40, 6765–6775 (2014)

    Article  Google Scholar 

  55. Turkyilmazoglu, M.: Efficiency of heat and mass transfer in fully wet porous fins: exponential fins versus straight fins. Int. J. Refrig. 46, 158–164 (2014)

    Article  Google Scholar 

  56. Turkyilmazoglu, M.: Stretching/shrinking longitudinal fins of rectangular profile and heat transfer. Energy Convers. Manag. 91, 199–203 (2015)

    Article  Google Scholar 

  57. Ahmad, I., Zahid, H., Ahmad, F., Raja, M.A.Z., Baleanu, D.: Design of computational intelligent procedure for thermal analysis of porous fin model. Chin. J. Phys. 59, 641–655 (2019)

    Article  MathSciNet  Google Scholar 

  58. Das, R., Ooi, K.: Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement. Energy Convers. Manag. 66, 211–219 (2013)

    Article  Google Scholar 

  59. Cengel, Y.A., Boles, M.A.: Thermodynamics: An Engineering Approach. McGraw-Hill, New York (2002)

    Google Scholar 

  60. Moran, M.J., et al.: Fundamentals of Engineering Thermodynamics. Wiley, West Sussex (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, Z.U., Ali, A. & Zaman, G. Entropy generation in moving exponential porous fins with natural convection, radiation and internal heat generation. Arch Appl Mech 92, 933–944 (2022). https://doi.org/10.1007/s00419-021-02081-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02081-2

Keywords

Navigation